Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

Overview

AceNAS

This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in strategy provided in NNI.

Data Preparation

  1. Download our prepared data from Google Drive. The directory should look like this:
data
├── checkpoints
│   ├── acenas-m1.pth.tar
│   ├── acenas-m2.pth.tar
│   └── acenas-m3.pth.tar
├── gcn
│   ├── nasbench101_gt_all.pkl
│   ├── nasbench201cifar10_gt_all.pkl
│   ├── nasbench201_gt_all.pkl
│   ├── nasbench201imagenet_gt_all.pkl
│   ├── nds_amoeba_gt_all.pkl
│   ├── nds_amoebaim_gt_all.pkl
│   ├── nds_dartsfixwd_gt_all.pkl
│   ├── nds_darts_gt_all.pkl
│   ├── nds_dartsim_gt_all.pkl
│   ├── nds_enasfixwd_gt_all.pkl
│   ├── nds_enas_gt_all.pkl
│   ├── nds_enasim_gt_all.pkl
│   ├── nds_nasnet_gt_all.pkl
│   ├── nds_nasnetim_gt_all.pkl
│   ├── nds_pnasfixwd_gt_all.pkl
│   ├── nds_pnas_gt_all.pkl
│   ├── nds_pnasim_gt_all.pkl
│   ├── nds_supernet_evaluate_all_test1_amoeba.json
│   ├── nds_supernet_evaluate_all_test1_dartsfixwd.json
│   ├── nds_supernet_evaluate_all_test1_darts.json
│   ├── nds_supernet_evaluate_all_test1_enasfixwd.json
│   ├── nds_supernet_evaluate_all_test1_enas.json
│   ├── nds_supernet_evaluate_all_test1_nasnet.json
│   ├── nds_supernet_evaluate_all_test1_pnasfixwd.json
│   ├── nds_supernet_evaluate_all_test1_pnas.json
│   ├── supernet_evaluate_all_test1_nasbench101.json
│   ├── supernet_evaluate_all_test1_nasbench201cifar10.json
│   ├── supernet_evaluate_all_test1_nasbench201imagenet.json
│   └── supernet_evaluate_all_test1_nasbench201.json
├── nb201
│   ├── split-cifar100.txt
│   ├── split-cifar10-valid.txt
│   └── split-imagenet-16-120.txt
├── proxyless
│   ├── imagenet
│   │   ├── augment_files.txt
│   │   ├── test_files.txt
│   │   ├── train_files.txt
│   │   └── val_files.txt
│   ├── proxyless-84ms-train.csv
│   ├── proxyless-ws-results.csv
│   └── tunas-proxylessnas-search.csv
└── tunas
    ├── imagenet_valid_split_filenames.txt
    ├── random_architectures.csv
    └── searched_architectures.csv
  1. (Required for benchmark experiments) Download CIFAR-10, CIFAR-100, ImageNet-16-120 dataset and also put them under data.
data
├── cifar10
│   └── cifar-10-batches-py
│       ├── batches.meta
│       ├── data_batch_1
│       ├── data_batch_2
│       ├── data_batch_3
│       ├── data_batch_4
│       ├── data_batch_5
│       ├── readme.html
│       └── test_batch
├── cifar100
│   └── cifar-100-python
│       ├── meta
│       ├── test
│       └── train
└── imagenet16
    ├── train_data_batch_1
    ├── train_data_batch_10
    ├── train_data_batch_2
    ├── train_data_batch_3
    ├── train_data_batch_4
    ├── train_data_batch_5
    ├── train_data_batch_6
    ├── train_data_batch_7
    ├── train_data_batch_8
    ├── train_data_batch_9
    └── val_data
  1. (Required for ImageNet experiments) Prepare ImageNet. You can put it anywhere.

  2. (Optional) Copy tunas (https://github.com/google-research/google-research/tree/master/tunas) to a folder named tunas.

Evaluate pre-trained models.

We provide 3 checkpoints obtained from 3 different runs in data/checkpoints. Please evaluate them via the following command.

python -m tools.standalone.imagenet_eval acenas-m1 /path/to/your/imagenet
python -m tools.standalone.imagenet_eval acenas-m2 /path/to/your/imagenet
python -m tools.standalone.imagenet_eval acenas-m3 /path/to/your/imagenet

Train supernet

python -m tools.supernet.nasbench101 experiments/supernet/nasbench101.yml
python -m tools.supernet.nasbench201 experiments/supernet/nasbench201.yml
python -m tools.supernet.nds experiments/supernet/darts.yml
python -m tools.supernet.proxylessnas experiments/supernet/proxylessnas.yml

Please refer to experiments/supernet folder for more configurations.

Benchmark experiments

We've already provided weight-sharing results from supernet so that you do not have to train you own. The provided files can be found in json files located under data/gcn.

# pretrain
python -m gcn.benchmarks.pretrain data/gcn/supernet_evaluate_all_test1_${SEARCHSPACE}.json data/gcn/${SEARCHSPACE}_gt_all.pkl --metric_keys top1 flops params
# finetune
python -m gcn.benchmarks.train --use_train_samples --budget {budget} --test_dataset data/gcn/${SEARCHSPACE}_gt_all.pkl --iteration 5 \
    --loss lambdarank --gnn_type gcn --early_stop_patience 50 --learning_rate 0.005 --opt_type adam --wd 5e-4 --epochs 300 --bs 20 \
    --resume /path/to/previous/output.pt

Running baselines

BRP-NAS:

# pretrain
python -m gcn.benchmarks.pretrain data/gcn/supernet_evaluate_all_test1_${SEARCHSPACE}.json data/gcn/${SEARCHSPACE}_gt_all.pkl --metric_keys flops
# finetune
python -m gcn.benchmarks.train --use_train_samples --budget ${BUDGET} --test_dataset data/gcn/${SEARCHSPACE}_gt_all.pkl --iteration 5 \
    --loss brp --gnn_type brp --early_stop_patience 35 --learning_rate 0.00035 \
    --opt_type adamw --wd 5e-4 --epochs 250 --bs 64 --resume /path/to/previous/output.pt

Vanilla:

python -m gcn.benchmarks.train --use_train_samples --budget ${BUDGET} --test_dataset data/gcn/${SEARCHSPACE}_gt_all.pkl --iteration 1 \
    --loss mse --gnn_type vanilla --n_hidden 144 --learning_rate 2e-4 --opt_type adam --wd 1e-3 --epochs 300 --bs 10

ProxylessNAS search space

Train GCN

python -m gcn.proxyless.pretrain --metric_keys ws_accuracy simulated_pixel1_time_ms flops params
python -m gcn.proxyless.train --loss lambdarank --early_stop_patience 50 --learning_rate 0.002 --opt_type adam --wd 5e-4 --epochs 300 --bs 20 \
    --resume /path/to/previous/output.pth

Train final model

Validation set:

python -m torch.distributed.launch --nproc_per_node=16 \
    --use_env --module \
    tools.standalone.imagenet_train \
    --output "$OUTPUT_DIR" "$ARCH" "$IMAGENET_DIR" \
    -b 256 --lr 2.64 --warmup-lr 0.1 \
    --warmup-epochs 5 --epochs 90 --sched cosine --num-classes 1000 \
    --opt rmsproptf --opt-eps 1. --weight-decay 4e-5 -j 8 --dist-bn reduce \
    --bn-momentum 0.01 --bn-eps 0.001 --drop 0. --no-held-out-val

Test set:

python -m torch.distributed.launch --nproc_per_node=16 \
    --use_env --module \
    tools.standalone.imagenet_train \
    --output "$OUTPUT_DIR" "$ARCH" "$IMAGENET_DIR" \
    -b 256 --lr 2.64 --warmup-lr 0.1 \
    --warmup-epochs 9 --epochs 360 --sched cosine --num-classes 1000 \
    --opt rmsproptf --opt-eps 1. --weight-decay 4e-5 -j 8 --dist-bn reduce \
    --bn-momentum 0.01 --bn-eps 0.001 --drop 0.15
Owner
Yuge Zhang
Yuge Zhang
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023