PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

Overview

2021-CVPR-MvCLN

This repo contains the code and data of the following paper accepted by CVPR 2021

Partially View-aligned Representation Learning with Noise-robust Contrastive Loss

Requirements

pytorch==1.5.0

numpy>=1.18.2

scikit-learn>=0.22.2

munkres>=1.1.2

logging>=0.5.1.2

Configuration

The hyper-parameters, the training options (including the ratiao of positive to negative, aligned proportions and switch time) are defined in the args. part in run.py.

Datasets

The Scene-15 and Reuters-dim10 datasets are placed in "datasets" folder. The NoisyMNIST and Caltech101 datasets could be downloaded from Google cloud or Baidu cloud with password "rqv4".

Usage

After setting the configuration and downloading datasets from the cloud desk, one could run the following code to verify our method on NoisyMNIST-30000 dataset for clustering task.

python run.py --data 3

The expected outputs are as follows:

******** Training begin, use RobustLoss: 1.0*m, use gpu 0, batch_size = 1024, unaligned_prop = 0.5, NetSeed = 64, DivSeed = 249 ********
=======> Train epoch: 0/80
margin = 5
distance: pos. = 2.5, neg. = 2.5, true neg. = 2.5, false neg. = 2.49
loss = 3.41, epoch_time = 12.07 s
******** testing ********
CAR=0.1012, kmeans: acc=0.1791, nmi=0.0435, ari=0.021
******* neg_dist_mean >= 1.0 * margin, start using fine loss at epoch: 3 *******
=======> Train epoch: 10/80
distance: pos. = 0.76, neg. = 5.38, true neg. = 5.83, false neg. = 1.34
loss = 0.09, epoch_time = 15.17 s
******** testing ********
CAR=0.8712, kmeans: acc=0.9462, nmi=0.8705, ari=0.8862
......
=======> Train epoch: 80/80
distance: pos. = 0.25, neg. = 5.34, true neg. = 5.8, false neg. = 1.17
loss = 0.03, epoch_time = 14.18 s
******** testing ********
CAR=0.8753, kmeans: acc=0.9459, nmi=0.8744, ari=0.8859
******** End, training time = 1276.29 s ********

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{yang2021MvCLN,
   title={Partially View-aligned Representation Learning with Noise-robust Contrastive Loss},
   author={Mouxing Yang, Yunfan Li, Zhenyu Huang, Zitao Liu, Peng Hu, Xi Peng},
   booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
   month={June},
   year={2021}
}
Owner
XLearning Group
Xi Peng's XLearning Group
XLearning Group
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
πŸ”Ž Monitor deep learning model training and hardware usage from your mobile phone πŸ“±

Monitor deep learning model training and hardware usage from mobile. πŸ”₯ Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
[제 13회 νˆ¬λΉ…μŠ€ 컨퍼런슀] OK Mugle! - μž₯λ₯΄λΆ€ν„° λ©œλ‘œλ””κΉŒμ§€, Content-based Music Recommendation

Ok Mugle! 🎡 μž₯λ₯΄λΆ€ν„° λ©œλ‘œλ””κΉŒμ§€, Content-based Music Recommendation 'Ok Mugle!'은 제13회 νˆ¬λΉ…μŠ€ 컨퍼런슀(2022.01.15)μ—μ„œ μ§„ν–‰ν•œ μŒμ•… μΆ”μ²œ ν”„λ‘œμ νŠΈμž…λ‹ˆλ‹€. Description πŸ“– λ³Έ ν”„λ‘œμ νŠΈμ—μ„œλŠ” Kakao

SeongBeomLEE 5 Oct 09, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

ε‡Œι€†ζˆ˜ 16 Dec 30, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023