Unadversarial Examples: Designing Objects for Robust Vision

Overview

Unadversarial Examples: Designing Objects for Robust Vision

This repository contains the code necessary to replicate the major results of our paper:

Unadversarial Examples: Designing Objects for Robust Vision
Hadi Salman*, Andrew Ilyas*, Logan Engstrom*, Sai Vemprala, Aleksander Madry, Ashish Kapoor
Paper
Blogpost (MSR)
Blogpost (Gradient Science)

@article{salman2020unadversarial,
  title={Unadversarial Examples: Designing Objects for Robust Vision},
  author={Hadi Salman and Andrew Ilyas and Logan Engstrom and Sai Vemprala and Aleksander Madry and Ashish Kapoor},
  journal={arXiv preprint arXiv:2012.12235},
  year={2020}
}

Getting started

The following steps will get you set up with the required packages (additional packages are required for the 3D textures setting, described below):

  1. Clone our repo: git clone https://github.com/microsoft/unadversarial.git

  2. Install dependencies:

    conda create -n unadv python=3.7
    conda activate unadv
    pip install -r requirements.txt
    

Generating unadversarial examples for CIFAR10

Here we show a quick example how to generate unadversarial examples for CIFAR-10. Similar procedure can be used with ImageNet. The entry point of our code is main.py (see the file for a full description of arguments).

1- Download a pretrained CIFAR10 models, e.g.,

mkdir pretrained-models & 
wget -O pretrained-models/cifar_resnet50.ckpt "https://www.dropbox.com/s/yhpp4yws7sgi6lj/cifar_nat.pt?raw=1"

2- Run the following script

python -m src.main \
      --out-dir OUT_DIR \
      --exp-name demo \
      --dataset cifar \
      --data /tmp \
      --arch resnet50 \
      --model-path pretrained-models/cifar_resnet50.ckpt \
      --patch-size 10 \
      --patch-lr 0.001 \
      --training-mode booster \
      --epochs 30 \
      --adv-train 0

You can see the trained patches images in outdir/demo/save/ as training evolves.

3- Now you can evaluate the pretrained model on a boosted CIFAR10-C dataset (trained patch overlaid on CIFAR-10, then corruptions are added). Simply run

python -m src.evaluate_corruptions \
      --out-dir OUT_DIR \
      --exp-name demo \
      --model-path OUT_DIR/demo/checkpoint.pt.best \
      --args-from-store data,dataset,arch,patch_size

This will evaluate the pretrained model on various corruptions and display the results in the terminal.

4- That's it!

Generating 3D unadversarial textures

The following steps were tested on these configurations:

  • Ubuntu 16.04, 8 x NVIDIA 1080Ti/2080Ti, 2x10-core Intel CPUs (w/ HyperThreading, 40 virtual cores), CUDA 10.2
  • Ubuntu 18.04, 2 x NVIDIA K80, 1x12-core Intel CPU, CUDA 10.2

1- Choose a dataset to use as background images; we used ImageNet in our paper, for which you will need to have ImageNet in PyTorch ImageFolder format somewhere on your machine. If you don't have that, you can just use solid colors as the backgrounds (though the results might not match the paper).

2- Install the requirements: you will need a machine with CUDA 10.2 installed (this process might work with other versions of CUDA but we only tested 10.2), as well as docker, nvidia-docker, and the requirements mentioned earlier in the README.

3- Go to the docker/ folder and run docker build --tag TAG ., changing TAG to your preferred name for your docker instance. This will build a docker instance with all the requirements installed!

4- Open launch.py and edit the IMAGENET_TRAIN and IMAGENET_VAL variables to point to the ImageNet dataset, if it's installed and you want to use it. Either way, change TAG on the last line of the file with whatever you named your docker instance in the last step.

5- Alter the parameters in src/configs/config.json according to your setup; the only things we would recommend altering are num_texcoord_renderers (this should not exceed the number of CPU cores you have available), exp_name (the name of the output folder, which will be created inside OUT_DIR from the previous step), and dataset (if you are using ImageNet, you can leave this be, otherwise change it to solids to use solid colors as the backgrounds).

6- From inside the docker folder, run python launch.py [--with-imagenet] --out-dir OUT_DIR --gpus GPUS from the same folder. The --with-imagenet argument should only be provided if you followed step four. The OUT_DIR argument should point to where you want the resulting models/output saved, and the GPUS argument should be a comma-separated list of GPU IDs that you would like to run the job on.

7- This process should open a new terminal (inside your docker instance). In this terminal, run GPU_MODE=0 bash run_imagenet.sh [bus|warplane|ship|truck|car] /src/configs/config.json /out

8- Your 3D unadversarial texture should now be generating! Output, including example renderings, the texture itself, and the model checkpoint will be saved to $(OUT_DIR)/$(exp_name).

An example texture that you would get for the warplane is

Simulating 3D Unadversarial Objects in AirSim

Coming soon!

Environments, 3D models, along with python API for controlling these objects and running online object recognition inside Microsoft's AirSim high-fidelity simulator.

Maintainers

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022