ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

Related tags

Deep Learningalbert
Overview

ALBERT

***************New March 28, 2020 ***************

Add a colab tutorial to run fine-tuning for GLUE datasets.

***************New January 7, 2020 ***************

v2 TF-Hub models should be working now with TF 1.15, as we removed the native Einsum op from the graph. See updated TF-Hub links below.

***************New December 30, 2019 ***************

Chinese models are released. We would like to thank CLUE team for providing the training data.

Version 2 of ALBERT models is released.

In this version, we apply 'no dropout', 'additional training data' and 'long training time' strategies to all models. We train ALBERT-base for 10M steps and other models for 3M steps.

The result comparison to the v1 models is as followings:

Average SQuAD1.1 SQuAD2.0 MNLI SST-2 RACE
V2
ALBERT-base 82.3 90.2/83.2 82.1/79.3 84.6 92.9 66.8
ALBERT-large 85.7 91.8/85.2 84.9/81.8 86.5 94.9 75.2
ALBERT-xlarge 87.9 92.9/86.4 87.9/84.1 87.9 95.4 80.7
ALBERT-xxlarge 90.9 94.6/89.1 89.8/86.9 90.6 96.8 86.8
V1
ALBERT-base 80.1 89.3/82.3 80.0/77.1 81.6 90.3 64.0
ALBERT-large 82.4 90.6/83.9 82.3/79.4 83.5 91.7 68.5
ALBERT-xlarge 85.5 92.5/86.1 86.1/83.1 86.4 92.4 74.8
ALBERT-xxlarge 91.0 94.8/89.3 90.2/87.4 90.8 96.9 86.5

The comparison shows that for ALBERT-base, ALBERT-large, and ALBERT-xlarge, v2 is much better than v1, indicating the importance of applying the above three strategies. On average, ALBERT-xxlarge is slightly worse than the v1, because of the following two reasons: 1) Training additional 1.5 M steps (the only difference between these two models is training for 1.5M steps and 3M steps) did not lead to significant performance improvement. 2) For v1, we did a little bit hyperparameter search among the parameters sets given by BERT, Roberta, and XLnet. For v2, we simply adopt the parameters from v1 except for RACE, where we use a learning rate of 1e-5 and 0 ALBERT DR (dropout rate for ALBERT in finetuning). The original (v1) RACE hyperparameter will cause model divergence for v2 models. Given that the downstream tasks are sensitive to the fine-tuning hyperparameters, we should be careful about so called slight improvements.

ALBERT is "A Lite" version of BERT, a popular unsupervised language representation learning algorithm. ALBERT uses parameter-reduction techniques that allow for large-scale configurations, overcome previous memory limitations, and achieve better behavior with respect to model degradation.

For a technical description of the algorithm, see our paper:

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut

Release Notes

  • Initial release: 10/9/2019

Results

Performance of ALBERT on GLUE benchmark results using a single-model setup on dev:

Models MNLI QNLI QQP RTE SST MRPC CoLA STS
BERT-large 86.6 92.3 91.3 70.4 93.2 88.0 60.6 90.0
XLNet-large 89.8 93.9 91.8 83.8 95.6 89.2 63.6 91.8
RoBERTa-large 90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4
ALBERT (1M) 90.4 95.2 92.0 88.1 96.8 90.2 68.7 92.7
ALBERT (1.5M) 90.8 95.3 92.2 89.2 96.9 90.9 71.4 93.0

Performance of ALBERT-xxl on SQuaD and RACE benchmarks using a single-model setup:

Models SQuAD1.1 dev SQuAD2.0 dev SQuAD2.0 test RACE test (Middle/High)
BERT-large 90.9/84.1 81.8/79.0 89.1/86.3 72.0 (76.6/70.1)
XLNet 94.5/89.0 88.8/86.1 89.1/86.3 81.8 (85.5/80.2)
RoBERTa 94.6/88.9 89.4/86.5 89.8/86.8 83.2 (86.5/81.3)
UPM - - 89.9/87.2 -
XLNet + SG-Net Verifier++ - - 90.1/87.2 -
ALBERT (1M) 94.8/89.2 89.9/87.2 - 86.0 (88.2/85.1)
ALBERT (1.5M) 94.8/89.3 90.2/87.4 90.9/88.1 86.5 (89.0/85.5)

Pre-trained Models

TF-Hub modules are available:

Example usage of the TF-Hub module in code:

tags = set()
if is_training:
  tags.add("train")
albert_module = hub.Module("https://tfhub.dev/google/albert_base/1", tags=tags,
                           trainable=True)
albert_inputs = dict(
    input_ids=input_ids,
    input_mask=input_mask,
    segment_ids=segment_ids)
albert_outputs = albert_module(
    inputs=albert_inputs,
    signature="tokens",
    as_dict=True)

# If you want to use the token-level output, use
# albert_outputs["sequence_output"] instead.
output_layer = albert_outputs["pooled_output"]

Most of the fine-tuning scripts in this repository support TF-hub modules via the --albert_hub_module_handle flag.

Pre-training Instructions

To pretrain ALBERT, use run_pretraining.py:

pip install -r albert/requirements.txt
python -m albert.run_pretraining \
    --input_file=... \
    --output_dir=... \
    --init_checkpoint=... \
    --albert_config_file=... \
    --do_train \
    --do_eval \
    --train_batch_size=4096 \
    --eval_batch_size=64 \
    --max_seq_length=512 \
    --max_predictions_per_seq=20 \
    --optimizer='lamb' \
    --learning_rate=.00176 \
    --num_train_steps=125000 \
    --num_warmup_steps=3125 \
    --save_checkpoints_steps=5000

Fine-tuning on GLUE

To fine-tune and evaluate a pretrained ALBERT on GLUE, please see the convenience script run_glue.sh.

Lower-level use cases may want to use the run_classifier.py script directly. The run_classifier.py script is used both for fine-tuning and evaluation of ALBERT on individual GLUE benchmark tasks, such as MNLI:

pip install -r albert/requirements.txt
python -m albert.run_classifier \
  --data_dir=... \
  --output_dir=... \
  --init_checkpoint=... \
  --albert_config_file=... \
  --spm_model_file=... \
  --do_train \
  --do_eval \
  --do_predict \
  --do_lower_case \
  --max_seq_length=128 \
  --optimizer=adamw \
  --task_name=MNLI \
  --warmup_step=1000 \
  --learning_rate=3e-5 \
  --train_step=10000 \
  --save_checkpoints_steps=100 \
  --train_batch_size=128

Good default flag values for each GLUE task can be found in run_glue.sh.

You can fine-tune the model starting from TF-Hub modules instead of raw checkpoints by setting e.g. --albert_hub_module_handle=https://tfhub.dev/google/albert_base/1 instead of --init_checkpoint.

You can find the spm_model_file in the tar files or under the assets folder of the tf-hub module. The name of the model file is "30k-clean.model".

After evaluation, the script should report some output like this:

***** Eval results *****
  global_step = ...
  loss = ...
  masked_lm_accuracy = ...
  masked_lm_loss = ...
  sentence_order_accuracy = ...
  sentence_order_loss = ...

Fine-tuning on SQuAD

To fine-tune and evaluate a pretrained model on SQuAD v1, use the run_squad_v1.py script:

pip install -r albert/requirements.txt
python -m albert.run_squad_v1 \
  --albert_config_file=... \
  --output_dir=... \
  --train_file=... \
  --predict_file=... \
  --train_feature_file=... \
  --predict_feature_file=... \
  --predict_feature_left_file=... \
  --init_checkpoint=... \
  --spm_model_file=... \
  --do_lower_case \
  --max_seq_length=384 \
  --doc_stride=128 \
  --max_query_length=64 \
  --do_train=true \
  --do_predict=true \
  --train_batch_size=48 \
  --predict_batch_size=8 \
  --learning_rate=5e-5 \
  --num_train_epochs=2.0 \
  --warmup_proportion=.1 \
  --save_checkpoints_steps=5000 \
  --n_best_size=20 \
  --max_answer_length=30

You can fine-tune the model starting from TF-Hub modules instead of raw checkpoints by setting e.g. --albert_hub_module_handle=https://tfhub.dev/google/albert_base/1 instead of --init_checkpoint.

For SQuAD v2, use the run_squad_v2.py script:

pip install -r albert/requirements.txt
python -m albert.run_squad_v2 \
  --albert_config_file=... \
  --output_dir=... \
  --train_file=... \
  --predict_file=... \
  --train_feature_file=... \
  --predict_feature_file=... \
  --predict_feature_left_file=... \
  --init_checkpoint=... \
  --spm_model_file=... \
  --do_lower_case \
  --max_seq_length=384 \
  --doc_stride=128 \
  --max_query_length=64 \
  --do_train \
  --do_predict \
  --train_batch_size=48 \
  --predict_batch_size=8 \
  --learning_rate=5e-5 \
  --num_train_epochs=2.0 \
  --warmup_proportion=.1 \
  --save_checkpoints_steps=5000 \
  --n_best_size=20 \
  --max_answer_length=30

You can fine-tune the model starting from TF-Hub modules instead of raw checkpoints by setting e.g. --albert_hub_module_handle=https://tfhub.dev/google/albert_base/1 instead of --init_checkpoint.

Fine-tuning on RACE

For RACE, use the run_race.py script:

pip install -r albert/requirements.txt
python -m albert.run_race \
  --albert_config_file=... \
  --output_dir=... \
  --train_file=... \
  --eval_file=... \
  --data_dir=...\
  --init_checkpoint=... \
  --spm_model_file=... \
  --max_seq_length=512 \
  --max_qa_length=128 \
  --do_train \
  --do_eval \
  --train_batch_size=32 \
  --eval_batch_size=8 \
  --learning_rate=1e-5 \
  --train_step=12000 \
  --warmup_step=1000 \
  --save_checkpoints_steps=100

You can fine-tune the model starting from TF-Hub modules instead of raw checkpoints by setting e.g. --albert_hub_module_handle=https://tfhub.dev/google/albert_base/1 instead of --init_checkpoint.

SentencePiece

Command for generating the sentence piece vocabulary:

spm_train \
--input all.txt --model_prefix=30k-clean --vocab_size=30000 --logtostderr
--pad_id=0 --unk_id=1 --eos_id=-1 --bos_id=-1
--control_symbols=[CLS],[SEP],[MASK]
--user_defined_symbols="(,),\",-,.,–,£,€"
--shuffle_input_sentence=true --input_sentence_size=10000000
--character_coverage=0.99995 --model_type=unigram
Owner
Google Research
Google Research
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs Check out the paper on arXiv: https://arxiv.org/abs/2103.13744 This repo cont

Christian Reiser 373 Dec 20, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022