[ICML 2021] A fast algorithm for fitting robust decision trees.

Overview

GROOT: Growing Robust Trees

Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust against user-specified adversarial examples. The algorithm closely resembles algorithms used for fitting normal decision trees (i.e. CART) but changes the splitting criterion and the way samples propagate when creating a split.

This repository contains the module groot that implements GROOT as a Scikit-learn compatible classifier, an adversary for model evaluation and easy functions to import datasets. For documentation see https://groot.cyber-analytics.nl

Simple example

To train and evaluate GROOT on a toy dataset against an attacker that can move samples by 0.5 in each direction one can use the following code:

from groot.adversary import DecisionTreeAdversary
from groot.model import GrootTreeClassifier

from sklearn.datasets import make_moons

X, y = make_moons(noise=0.3, random_state=0)
X_test, y_test = make_moons(noise=0.3, random_state=1)

attack_model = [0.5, 0.5]
is_numerical = [True, True]
tree = GrootTreeClassifier(attack_model=attack_model, is_numerical=is_numerical, random_state=0)

tree.fit(X, y)
accuracy = tree.score(X_test, y_test)
adversarial_accuracy = DecisionTreeAdversary(tree, "groot").adversarial_accuracy(X_test, y_test)

print("Accuracy:", accuracy)
print("Adversarial Accuracy:", adversarial_accuracy)

Installation

groot can be installed from PyPi: pip install groot-trees

To use Kantchelian's MILP attack it is required that you have GUROBI installed along with their python package: python -m pip install -i https://pypi.gurobi.com gurobipy

Specific dependency versions

To reproduce our experiments with exact package versions you can clone the repository and run: pip install -r requirements.txt

We recommend using virtual environments.

Reproducing 'Efficient Training of Robust Decision Trees Against Adversarial Examples' (article)

To reproduce the results from the paper we provide generate_k_fold_results.py, a script that takes the trained models (from JSON format) and generates tables and figures. The resulting figures generate under /out/.

To not only generate the results but to also retrain all models we include the scripts train_kfold_models.py and fit_chen_xgboost.py. The first script runs the algorithms in parallel for each dataset then outputs to /out/trees/ and /out/forests/. Warning: the script can take a long time to run (about a day given 16 cores). The second script train specifically the Chen et al. boosting ensembles. /out/results.zip contains all results from when we ran the scripts.

To experiment on image datasets we have a script image_experiments.py that fits and output the results. In this script, one can change the dataset variable to 'mnist' or 'fmnist' to switch between the two.

The scripts summarize_datasets.py and visualize_threat_models.py output some figures we used in the text.

Implementation details

The TREANT implementation (groot.treant.py) is copied almost completely from the authors of TREANT at https://github.com/gtolomei/treant with small modifications to better interface with the experiments. The heuristic by Chen et al. runs in the GROOT code, only with a different score function. This score function can be enabled by setting chen_heuristic=True on a GrootTreeClassifier before calling .fit(X, y). The provably robust boosting implementation comes almost completely from their code at https://github.com/max-andr/provably-robust-boosting and we use a small wrapper around their code (groot.provably_robust_boosting.wrapper.py) to use it. When we recorded the runtimes we turned off all parallel options in the @jit annotations from the code. The implementation of Chen et al. boosting can be found in their own repo https://github.com/chenhongge/RobustTrees, from whic we need to compile and copy the binary xgboost to the current directory. The script fit_chen_xgboost.py then calls this binary and uses the command line interface to fit all models.

Important note on TREANT

To encode L-infinity norms correctly we had to modify TREANT to NOT apply rules recursively. This means we added a single break statement in the treant.Attacker.__compute_attack() method. If you are planning on using TREANT with recursive attacker rules then you should remove this statement or use TREANT's unmodified code at https://github.com/gtolomei/treant .

Contact

For any questions or comments please create an issue or contact me directly.

Comments
  • Reproducing results from the article, issue with runtimes.csv

    Reproducing results from the article, issue with runtimes.csv

    Hello! I am trying to reproduce results from the article, and I can't figure out certain problem. First I am trying to run train_kfold_models, but the code always ouputs an error: "ImportError: cannot import name 'GrootTree' from 'groot.model'". Is there something wrong with the .py file I am trying to run, or is this problem something that doesn't occur to you and everyone else (-->something wrong on computer or files or environment)?

    Onni Mansikkamäki

    opened by OnniMansikkamaki 3
  • is_numerical argument GrootTreeClassifier

    is_numerical argument GrootTreeClassifier

    Running the example code on the make moons data in the README I get:

    Traceback (most recent call last):
      File "/home/.../groot_test.py", line 11, in <module>
        tree = GrootTreeClassifier(attack_model=attack_model, is_numerical=is_numerical, random_state=0)
    TypeError: __init__() got an unexpected keyword argument 'is_numerical'
    

    Leaving out the argument and having this line instead: tree = GrootTreeClassifier(attack_model=attack_model, random_state=0) results in this error:

    Traceback (most recent call last):
      File "/home/.../groot_test.py", line 15, in <module>
        adversarial_accuracy = DecisionTreeAdversary(tree, "groot").adversarial_accuracy(X_test, y_test)
      File "/home/.../venv/lib/python3.9/site-packages/groot/adversary.py", line 259, in __init__
        self.is_numeric = self.decision_tree.is_numerical
    AttributeError: 'GrootTreeClassifier' object has no attribute 'is_numerical'
    

    I'm guessing the code got an update, but the readme didn't. Or I made a stupid mistake, also very possible.

    opened by laudv 2
  • Reproducing result from paper

    Reproducing result from paper

    Hello! I am trying to reproduce the results from the paper. I am struggling to find, where these files: generate_k_fold_results.py, train_kfold_models.py, fit_chen_xgboost.py, image_experiments.py, summarize_datasets.py and visualize_threat_models.py are provided?

    Onni Mansikkamäki

    opened by OnniMansikkamaki 0
  • Regression decision trees and random forests

    Regression decision trees and random forests

    This PR adds GROOT decision trees and random forests that use the adversarial sum of absolute errors to make splits. It also adds new tests, speeds them up and updates the documentation.

    opened by daniel-vos 0
  • Add regression, tests and refactor into base class

    Add regression, tests and refactor into base class

    This PR adds a regression GROOT tree based on the adversarial sum of absolute errors, more tests and refactors GROOT trees into a base class (BaseGrootTree) with subclasses GrootTreeClassifier and GrootTreeRegressor extending it.

    opened by daniel-vos 0
Releases(v0.0.1)
Owner
Cyber Analytics Lab
@ Delft University of Technology
Cyber Analytics Lab
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Official implementation of "Watermarking Images in Self-Supervised Latent-Spaces"

🔍 Watermarking Images in Self-Supervised Latent-Spaces PyTorch implementation and pretrained models for the paper. For details, see Watermarking Imag

Meta Research 32 Dec 13, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

InvariantAncestrySearch This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search

Phillip Bredahl Mogensen 0 Feb 02, 2022
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.

Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting

Tengfei Wang 21 Nov 05, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022