Effective Use of Transformer Networks for Entity Tracking

Overview

Effective Use of Transformer Networks for Entity Tracking (EMNLP19)

This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-trained transformer architectures in capturing complex entity interaction in procedural texts.

Dependencies

The code was developed by extending Hugging Face's implementations of OpenAI's GPT and BERT.

Dataset and code

The dataset for two tasks: (i) Recipes, and (ii) ProPara can be found here in the appropriate directories.

The codebase consists of two main sub-directories:

gpt-entity-tracking

This consist of the codebase for the main ET-GPT model along with the variants, related experimentation, and gradient analysis for the Recipes and ProPara dataset:

  • train_transformer_recipe_lm.py is the main training code for the Recipes task and following is the example usage:
python3 train_transformer_recipe_lm.py --n_iter_lm 5 --n_iter 20 --n_layer 12 --n_head 12 --n_embd 768 --lmval 2000 --lmtotal 50000
  • dataset/ folder consists of the complete train/val/test data for the two tasks.
  • save/ folder consists of the saved model params for the best model which can used to reproduce results.
  • log/ folder consists of the training logs after each iteration.
  • run_transformer_recipe_lm.py load a saved model to perform inference on the test set.
  • train_transformer_recipes_lm5_12_12_768_50000.npy consists of the probabilities for the test file in dataset folder test_recipes_task.json.
  • ingredient_type_annotations_dev_test.json is the annotated json file containing ground truth whether the ingredient was in a combined or uncombined state in a recipe in a particular time-step. This was file used for calculating Combined Recall and Uncombined Recall.

bert-entity-tracking

This consists of codebase for the ET-BERT experiments, primarily focused on the ProPara experiments:

  • bert_propara_context_ing/ and bert_propara_ing_context/ folders consists of the reproduced results for ProPara experiments. The code for this would be in bert_propara.py.
  • propara_sent_test_bert_et.tsv consists of the results on the sentence level task and using this script
  • propara_sent_val_bert_et.tsv consists of the results on validation set of sentence level task.
  • para_id.val.txt and gold_labels_valid.tsv are the helper files for val set of ProPara's sentence level task.

Citation

 @inproceedings{gupta-durrett-2019-entity-tracking,
    title = "Effective Use of Transformer Networks for Entity Tracking",
    author = "Gupta, Aditya  and Durrett, Greg",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
}
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022