Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

Overview

LapDepth-release

PWC PWC

This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals"

Minsoo Song, Seokjae Lim, and Wonjun Kim*
IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)

Video presentation

Screenshot

Requirements

  • Python >= 3.7
  • Pytorch >= 1.6.0
  • Ubuntu 16.04
  • CUDA 9.2
  • cuDNN (if CUDA available)

some other packages: geffnet, path, IPython, blessings, progressbar

Pretrained models

You can download pre-trained model

  • Trained with KITTI

    • batch 16, SyncBatchNorm, data loss
    cap a1 a2 a3 Abs Rel Sq Rel RMSE RMSE log
    0-80m 0.965 0.995 0.999 0.059 0.201 2.397 0.090
    cap a1 a2 a3 Abs Rel Sq Rel RMSE RMSE log
    0-50m 0.970 0.996 0.999 0.057 0.155 1.788 0.085
  • Trained with KITTI

    • batch 16, GroupNorm, data loss + gradient loss
    cap a1 a2 a3 Abs Rel Sq Rel RMSE RMSE log
    0-80m 0.961 0.994 0.999 0.059 0.209 2.489 0.091
    cap a1 a2 a3 Abs Rel Sq Rel RMSE RMSE log
    0-50m 0.968 0.996 0.999 0.057 0.155 1.807 0.085
  • Trained with NYU Depth V2

    • batch 16, SyncBatchNorm, data loss
    cap a1 a2 a3 Abs Rel log10 RMSE RMSE log
    0-10m 0.895 0.983 0.996 0.105 0.045 0.384 0.135

Demo images (Single Test Image Prediction)

Make sure you download the pre-trained model and placed it in the './pretrained/' directory before running the demo.
Demo Command Line:

############### Example of argument usage #####################
## Running demo using a specified image (jpg or png)
python demo.py --model_dir ./pretrained/LDRN_KITTI_ResNext101_pretrained_data.pkl --img_dir ./your/file/path/filename --pretrained KITTI --cuda --gpu_num 0
python demo.py --model_dir ./pretrained/LDRN_NYU_ResNext101_pretrained_data.pkl --img_dir ./your/file/path/filename --pretrained NYU --cuda --gpu_num 0
# output image name => 'out_' + filename

## Running demo using a whole folder of images
python demo.py --model_dir ./pretrained/LDRN_KITTI_ResNext101_pretrained_data.pkl --img_folder_dir ./your/folder/path/folder_name --pretrained KITTI --cuda --gpu_num 0
# output folder name => 'out_' + folder_name

If you are using a model pre-trained from KITTI, insert '--pretrained KITTI' command
(in the case of NYU, '--pretrained NYU').
If you run the demo on GPU, insert '--cuda'.
'--gpu_num' argument is an index list of your available GPUs you want to use (e.g., 0,1,2,3).
ex) If you want to activate only the 3rd gpu out of 4 gpus, insert '--gpu_num 2'

Dataset Preparation

We referred to BTS in the data preparation process.

KITTI

1. Official ground truth

  • Download official KITTI ground truth on the link and make KITTI dataset directory.
    $ cd ./datasets
    $ mkdir KITTI && cd KITTI
    $ mv ~/Downloads/data_depth_annotated.zip ./datasets/KITTI
    $ unzip data_depth_annotated.zip

2. Raw dataset

  • Construct raw KITTI dataset using following commands.
    $ mv ./datasets/kitti_archives_to_download.txt ./datasets/KITTI
    $ cd ./datasets/KITTI
    $ aria2c -x 16 -i ./kitti_archives_to_download.txt
    $ parallel unzip ::: *.zip

3. Dense g.t dataset
We take an inpainting method from DenseDepth to get dense g.t for gradient loss.
(You can train our model using only data loss without gradient loss, then you don't need dense g.t)
Corresponding inpainted results from './datasets/KITTI/data_depth_annotated/2011_xx_xx_drive_xxxx_sync/proj_depth/groundtruth/image_02' are should be saved in './datasets/KITTI/data_depth_annotated/2011_xx_xx_drive_xxxx_sync/dense_gt/image_02'.
KITTI data structures are should be organized as below:

|-- datasets
  |-- KITTI
     |-- data_depth_annotated  
        |-- 2011_xx_xx_drive_xxxx_sync
           |-- proj_depth  
              |-- groundtruth            # official G.T folder
        |-- ... (all drives of all days in the raw KITTI)  
     |-- 2011_09_26                      # raw RGB data folder  
        |-- 2011_09_26_drive_xxxx_sync
     |-- 2011_09_29
     |-- ... (all days in the raw KITTI)  

NYU Depth V2

1. Training set
Make NYU dataset directory

    $ cd ./datasets
    $ mkdir NYU_Depth_V2 && cd NYU_Depth_V2
  • Constructing training data using following steps :
    • Download Raw NYU Depth V2 dataset (450GB) from this Link.
    • Extract the raw dataset into './datasets/NYU_Depth_V2'
      (It should make './datasets/NYU_Depth_V2/raw/....').
    • Run './datasets/sync_project_frames_multi_threads.m' to get synchronized data. (need Matlab)
      (It shoud make './datasets/NYU_Depth_V2/sync/....').
  • Or, you can directly download whole 'sync' folder from our Google drive Link into './datasets/NYU_Depth_V2/'

2. Testing set
Download official nyu_depth_v2_labeled.mat and extract image files from the mat file.

    $ cd ./datasets
    ## Download official labled NYU_Depth_V2 mat file
    $ wget http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat
    ## Extract image files from the mat file
    $ python extract_official_train_test_set_from_mat.py nyu_depth_v2_labeled.mat splits.mat ./NYU_Depth_V2/official_splits/

Evaluation

Make sure you download the pre-trained model and placed it in the './pretrained/' directory before running the evaluation code.

  • Evaluation Command Line:
# Running evaluation using a pre-trained models
## KITTI
python eval.py --model_dir ./pretrained/LDRN_KITTI_ResNext101_pretrained_data.pkl --evaluate --batch_size 1 --dataset KITTI --data_path ./datasets/KITTI --gpu_num 0
## NYU Depth V2
python eval.py --model_dir ./pretrained/LDRN_NYU_ResNext101_pretrained_data.pkl --evaluate --batch_size 1 --dataset NYU --data_path --data_path ./datasets/NYU_Depth_V2/official_splits/test --gpu_num 0

### if you want to save image files from results, insert `--img_save` command
### if you have dense g.t files, insert `--img_save` with `--use_dense_depth` command

Training

LDRN (Laplacian Depth Residual Network) training

  • Training Command Line:
# KITTI 
python train.py --distributed --batch_size 16 --dataset KITTI --data_path ./datasets/KITTI --gpu_num 0,1,2,3
# NYU
python train.py --distributed --batch_size 16 --dataset NYU --data_path ./datasets/NYU_Depth_V2/sync --epochs 30 --gpu_num 0,1,2,3 
## if you want to train using gradient loss, insert `--use_dense_depth` command
## if you don't want distributed training, remove `--distributed` command

'--gpu_num' argument is an index list of your available GPUs you want to use (e.g., 0,1,2,3).
ex) If you want to activate only the 3rd gpu out of 4 gpus, insert '--gpu_num 2'

Reference

When using this code in your research, please cite the following paper:

M. Song, S. Lim and W. Kim, "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals," in IEEE Transactions on Circuits and Systems for Video Technology, doi: 10.1109/TCSVT.2021.3049869.

@ARTICLE{9316778,
  author={M. {Song} and S. {Lim} and W. {Kim}},
  journal={IEEE Transactions on Circuits and Systems for Video Technology}, 
  title={Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals}, 
  year={2021},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TCSVT.2021.3049869}}
Owner
Minsoo Song
B.S. degree with the Department of Electrical and Electronics Engineering, Konkuk University (2014.03 ~)
Minsoo Song
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021