[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Overview

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

This repository contains the source code for the paper Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation.

Abstract

We present an approach for jointly matching and segmenting object instances of the same category within a collection of images. In contrast to existing algorithms that tackle the tasks of semantic matching and object co-segmentation in isolation, our method exploits the complementary nature of the two tasks. The key insights of our method are two-fold. First, the estimated dense correspondence fields from semantic matching provide supervision for object co-segmentation by enforcing consistency between the predicted masks from a pair of images. Second, the predicted object masks from object co-segmentation in turn allow us to reduce the adverse effects due to background clutters for improving semantic matching. Our model is end-to-end trainable and does not require supervision from manually annotated correspondences and object masks. We validate the efficacy of our approach on five benchmark datasets: TSS, Internet, PF-PASCAL, PF-WILLOW, and SPair-71k, and show that our algorithm performs favorably against the state-of-the-art methods on both semantic matching and object co-segmentation tasks.

Citation

If you find our code useful, please consider citing our work using the following bibtex:

@article{MaCoSNet,
    title={Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation},
    author={Chen, Yun-Chun and Lin, Yen-Yu and Yang, Ming-Hsuan and Huang, Jia-Bin},
    journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)},
    year={2020}
}

@inproceedings{WeakMatchNet,
  title={Deep Semantic Matching with Foreground Detection and Cycle-Consistency},
  author={Chen, Yun-Chun and Huang, Po-Hsiang and Yu, Li-Yu and Huang, Jia-Bin and Yang, Ming-Hsuan and Lin, Yen-Yu},
  booktitle={Asian Conference on Computer Vision (ACCV)},
  year={2018}
}

Environment

  • Install Anaconda Python3.7
  • This code is tested on NVIDIA V100 GPU with 16GB memory
pip install -r requirements.txt

Dataset

Training

  • You may determine which dataset to be the training set by changing the $DATASET variable in train.sh
  • You may change the $BATCH_SIZE variable in train.sh to a suitable value based on the GPU memory
  • The trained model will be saved under the trained_models folder
sh train.sh

Evaluation

  • You may determine which dataset to be evaluated by changing the $DATASET variable in eval.sh
  • You may change the $BATCH_SIZE variable in eval.sh to a suitable value based on the GPU memory
sh eval.sh

Acknowledgement

Owner
Yun-Chun Chen
I work on computer vision and robotics.
Yun-Chun Chen
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022