Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Overview

Geometry-aware Instance-reweighted Adversarial Training

This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (https://openreview.net/forum?id=iAX0l6Cz8ub) (ICLR oral)
Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama and Mohan Kankanhalli

What is the nature of adversarial training?

Adversarial training employs adversarial data for updating the models. For more details of the nature of adversarial training, refer to this FAT's GitHub for the preliminary.
In this repo, you will know:

FACT 1: Model Capacity is NOT enough for adversarial training.

We plot standard training error (Natural) and adversarial training error (PGD-10) over the training epochs of the standard AT (Madry's) on CIFAR-10 dataset. *Left panel*: AT on different sizes of network (blue lines) and standard training (ST, the red line) on ResNet-18. *Right panel*: AT on ResNet-18 under different perturbation bounds eps_train.

Refer to FAT's GitHub for the standard AT by setting

python FAT.py --epsilon 0.031 --net 'resnet18' --tau 10 --dynamictau False

OR using codes in this repo by setting

python GAIRAT.py --epsilon 0.031 --net 'resnet18' --Lambda 'inf'

to recover the standard AT (Madry's).

The over-parameterized models that fit nataral data entirely in the standard training (ST) are still far from enough for fitting adversarial data in adversarial training (AT). Compared with ST fitting the natural data points, AT smooths the neighborhoods of natural data, so that adversarial data consume significantly more model capacity than natural data.

The volume of this neighborhood is exponentially large w.r.t. the input dimension , even if is small.

Under the computational budget of 100 epochs, the networks hardly reach zero error on the adversarial training data.

FACT 2: Data points are inherently different.

More attackable data are closer to the decision boundary.

More guarded data are farther away from the decision boundary.

More attackable data (lighter red and blue) are closer to the decision boundary; more guarded data (darker red and blue) are farther away from the decision boundary. *Left panel*: Two toy examples. *Right panel*: The model’s output distribution of two randomly selected classes from the CIFAR-10 dataset. The degree of robustness (denoted by the color gradient) of a data point is calculated based on the least number of iterations κ that PGD needs to find its misclassified adversarial variant.

Therefore, given the limited model capacity, we should treat data differently for updating the model in adversarial training.

IDEA: Geometrically speaking, a natural data point closer to/farther from the class boundary is less/more robust, and the corresponding adversarial data point should be assigned with larger/smaller weight for updating the model.
To implement the idea, we propose geometry-aware instance-reweighted adversarial training (GAIRAT), where the weights are based on how difficult it is to attack a natural data point.
"how difficult it is to attack a natural data point" is approximated by the number of PGD steps that the PGD method requires to generate its misclassified adversarial variant.

The illustration of GAIRAT. GAIRAT explicitly gives larger weights on the losses of adversarial data (larger red), whose natural counterparts are closer to the decision boundary (lighter blue). GAIRAT explicitly gives smaller weights on the losses of adversarial data (smaller red), whose natural counterparts are farther away from the decision boundary (darker blue).

GAIRAT's Implementation

For updating the model, GAIRAT assigns instance dependent weight (reweight) on the loss of the adversarial data (found in GAIR.py).
The instance dependent weight depends on num_steps, which indicates the least PGD step numbers needed for the misclassified adversarial variant.

Preferred Prerequisites

  • Python (3.6)
  • Pytorch (1.2.0)
  • CUDA
  • numpy
  • foolbox

Running GAIRAT, GAIR-FAT on benchmark datasets (CIFAR-10 and SVHN)

Here are examples:

  • Train GAIRAT and GAIR-FAT on WRN-32-10 model on CIFAR-10 and compare our results with AT, FAT
CUDA_VISIBLE_DEVICES='0' python GAIRAT.py 
CUDA_VISIBLE_DEVICES='0' python GAIR_FAT.py 
  • How to recover the original FAT and AT using our code?
CUDA_VISIBLE_DEVICES='0' python GAIRAT.py --Lambda 'inf' --output_dir './AT_results' 
CUDA_VISIBLE_DEVICES='0' python GAIR_FAT.py --Lambda 'inf' --output_dir './FAT_results' 
  • Evaluations After running, you can find ./GAIRAT_result/log_results.txt and ./GAIR_FAT_result/log_results.txt for checking Natural Acc. and PGD-20 test Acc.
    We also evaluate our models using PGD+. PGD+ is the same as PG_ours in RST repo. PG_ours is PGD with 5 random starts, and each start has 40 steps with step size 0.01 (It has 40 × 5 = 200 iterations for each test data). Since PGD+ is computational defense, we only evaluate the best checkpoint bestpoint.pth.tar and the last checkpoint checkpoint.pth.tar in the folders GAIRAT_result and GAIR_FAT_result respectively.
CUDA_VISIBLE_DEVICES='0' python eval_PGD_plus.py --model_path './GAIRAT_result/bestpoint.pth.tar' --output_suffix='./GAIRAT_PGD_plus'
CUDA_VISIBLE_DEVICES='0' python eval_PGD_plus.py --model_path './GAIR_FAT_result/bestpoint.pth.tar' --output_suffix='./GAIR_FAT_PGD_plus'

White-box evaluations on WRN-32-10

Defense (best checkpoint) Natural Acc. PGD-20 Acc. PGD+ Acc.
AT(Madry) 86.92 % 0.24% 51.96% 0.21% 51.28% 0.23%
FAT 89.16% 0.15% 51.24% 0.14% 46.14% 0.19%
GAIRAT 85.75% 0.23% 57.81% 0.54% 55.61% 0.61%
GAIR-FAT 88.59% 0.12% 56.21% 0.52% 53.50% 0.60%
Defense (last checkpoint) Natural Acc. PGD-20 Acc. PGD+ Acc.
AT(Madry) 86.62 % 0.22% 46.73% 0.08% 46.08% 0.07%
FAT 88.18% 0.19% 46.79% 0.34% 45.80% 0.16%
GAIRAT 85.49% 0.25% 53.76% 0.49% 50.32% 0.48%
GAIR-FAT 88.44% 0.10% 50.64% 0.56% 47.51% 0.51%

For more details, refer to Table 1 and Appendix C.8 in the paper.

Benchmarking robustness with additional 500K unlabeled data on CIFAR-10 dataset.

In this repo, we unleash the full power of our geometry-aware instance-reweighted methods by incorporating 500K unlabeled data (i.e., GAIR-RST). In terms of both evaluation metrics, i.e., generalization and robustness, we can obtain the best WRN-28-10 model among all public available robust models.

  • How to create the such the superior model from scratch?
  1. Download ti_500K_pseudo_labeled.pickle containing our 500K pseudo-labeled TinyImages from this link (Auxillary data provided by Carmon et al. 2019). Store ti_500K_pseudo_labeled.pickle into the folder ./data
  2. You may need mutilple GPUs for running this.
chmod +x ./GAIR_RST/run_training.sh
./GAIR_RST/run_training.sh
  1. We evaluate the robust model using natural test accuracy on natural test data and roubust test accuracy by Auto Attack. Auto Attack is combination of two white box attacks and two black box attacks.
chmod +x ./GAIR_RST/autoattack/examples/run_eval.sh

White-box evaluations on WRN-28-10

We evaluate the robustness on CIFAR-10 dataset under auto-attack (Croce & Hein, 2020).

Here we list the results using WRN-28-10 on the leadboard and our results. In particular, we use the test eps = 0.031 which keeps the same as the training eps of our GAIR-RST.

CIFAR-10 - Linf

The robust accuracy is evaluated at eps = 8/255, except for those marked with * for which eps = 0.031, where eps is the maximal Linf-norm allowed for the adversarial perturbations. The eps used is the same set in the original papers.
Note: ‡ indicates models which exploit additional data for training (e.g. unlabeled data, pre-training).

# method/paper model architecture clean report. AA
1 (Gowal et al., 2020) authors WRN-28-10 89.48 62.76 62.80
2 (Wu et al., 2020b) available WRN-28-10 88.25 60.04 60.04
- GAIR-RST (Ours)* available WRN-28-10 89.36 59.64 59.64
3 (Carmon et al., 2019) available WRN-28-10 89.69 62.5 59.53
4 (Sehwag et al., 2020) available WRN-28-10 88.98 - 57.14
5 (Wang et al., 2020) available WRN-28-10 87.50 65.04 56.29
6 (Hendrycks et al., 2019) available WRN-28-10 87.11 57.4 54.92
7 (Moosavi-Dezfooli et al., 2019) authors WRN-28-10 83.11 41.4 38.50
8 (Zhang & Wang, 2019) available WRN-28-10 89.98 60.6 36.64
9 (Zhang & Xu, 2020) available WRN-28-10 90.25 68.7 36.45

The results show our GAIR-RST method can facilitate a competitive model by utilizing additional unlabeled data.

Wanna download our superior model for other purposes? Sure!

We welcome various attack methods to attack our defense models. For cifar-10 dataset, we normalize all images into [0,1].

Download our pretrained models checkpoint-epoch200.pt into the folder ./GAIR_RST/GAIR_RST_results through this Google Drive link.

You can evaluate this pretrained model through ./GAIR_RST/autoattack/examples/run_eval.sh

Reference

@inproceedings{
zhang2021_GAIRAT,
title={Geometry-aware Instance-reweighted Adversarial Training},
author={Jingfeng Zhang and Jianing Zhu and Gang Niu and Bo Han and Masashi Sugiyama and Mohan Kankanhalli},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=iAX0l6Cz8ub}
}

Contact

Please contact [email protected] or [email protected] and [email protected] if you have any question on the codes.

Owner
Jingfeng
Jingfeng Zhang, Postdoc (2021 - ) at RIKEN-AIP, Tokyo; Ph.D. (2016- 2020) from the School of Computing at the National University of Singapore.
Jingfeng
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 05, 2023
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
To SMOTE, or not to SMOTE?

To SMOTE, or not to SMOTE? This package includes the code required to repeat the experiments in the paper and to analyze the results. To SMOTE, or not

Amazon Web Services 1 Jan 03, 2022
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python

Mesh-Keys A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python Have been seeing alot

Joseph 53 Dec 13, 2022
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022