A "gym" style toolkit for building lightweight Neural Architecture Search systems

Overview

gymnastics

License CI status Code analysis

A "gym" style toolkit for building lightweight Neural Architecture Search systems. I know, the name is awful.

Installation

Preferred option: Install from source:

git clone [email protected]:jack-willturner/gymnastics.git
cd gymnastics
python setup.py install

To install the latest release version:

pip install gymnastics

If you want to use NAS-Bench-101, follow the instructions here to get it set up.

Overview

Over the course of the final year of my PhD I worked a lot on Neural Architecture Search (NAS) and built a bunch of tooling to make my life easier. This is an effort to standardise the various features into a single framework and provide a "gym" style toolkit for comparing various algorithms.

The key use cases for this library are:

  • test out new predictors on various NAS benchmarks
  • visualise the cells/graphs of your architectures
  • add new operations to NAS spaces
  • add new backbones to NAS spaces

The framework revolves around three key classes:

  1. Model
  2. Proxy
  3. SearchSpace

The anatomy of NAS

We can break down NAS spaces into three separate components: the skeleton or backbone of the network, the possible cells that can fill the skeletons, and the possible operations that can fill the cells. NAS papers and benchmarks all define their own versions of each of these variables. Our goal here is to de-couple the "search strategy" from the "search space" by allowing NAS designers to test out their technique on many NAS search spaces very easily. Specifically, the goal is the provide an easy interface for defining each column of the picture above.

Obligatory builder pattern README example

Using gymnastics we can very easily reconstruct NAS spaces (the goal being that it's easy to define new and exciting ones).

For example, here's how easy it is to redefine the NATS-Bench / NAS-Bench-201 search space:

best_score: best_score = score best_model = model best_model.show_picture() ">
from gymnastics.searchspace import SearchSpace, CellSpace, Skeleton
from gymnastics.searchspace.ops import Conv3x3, Conv1x1, AvgPool2d, Skip, Zeroize

search_space = SearchSpace(
    CellSpace(
        ops=[Conv3x3, Conv1x1, AvgPool2d, Skip, Zeroize], num_nodes=4, num_edges=6
    ),
    Skeleton(
        style=ResNetCIFAR,
        num_blocks=[5, 5, 5],
        channels_per_stage=[16, 32, 64],
        strides_per_stage=[1, 2, 2],
        block_expansion=1
    ),
)


# create an accuracy predictor
from gymnastics.proxies import NASWOT
from gymnastics.datasets import CIFAR10Loader

proxy = NASWOT()
dataset = CIFAR10Loader(path="~/datasets/cifar10", download=False)

minibatch, _ = dataset.sample_minibatch()

best_score = 0.0
best_model = None

# try out 10 random architectures and save the best one
for i in range(10):

    model = search_space.sample_random_architecture()

    y = model(minibatch)

    score = proxy.score(model, minibatch)

    if score > best_score:
        best_score = score
        best_model = model

best_model.show_picture()

Which prints:

Have a look in examples/ for more examples.

NAS-Benchmarks

If you have designed a new proxy for accuracy and want to test its performance, you can use the benchmarks available in benchmarks/.

The interface to the benchmarks is exactly the same as the above example for SearchSpace.

For example, here we score networks from the NDS ResNet space using random input data:

import torch
from gymnastics.benchmarks import NDSSearchSpace
from gymnastics.proxies import Proxy, NASWOT

search_space = NDSSearchSpace(
    "~/nds/data/ResNet.json", searchspace="ResNet"
)

proxy: Proxy = NASWOT()
minibatch: torch.Tensor = torch.rand((10, 3, 32, 32))

scores = []

for _ in range(10):
    model = search_space.sample_random_architecture()
    scores.append(proxy.score(model, minibatch))

Additional supported operations

In addition to the standard NAS operations we include a few more exotic ones, all in various states of completion:

Op Paper Notes
conv - params: kernel size
gconv - + params: group
depthwise separable pdf + no extra params needed
mixconv pdf + params: needs a list of kernel_sizes
octaveconv pdf Don't have a sensible way to include this as a single operation yet
shift pdf no params needed
ViT pdf
Fused-MBConv pdf
Lambda pdf

Repositories that use this framework

Alternatives

If you are looking for alternatives to this library, there are a few which I will try to keep a list of here:

Owner
Jack Turner
Jack Turner
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022