URIE: Universal Image Enhancementfor Visual Recognition in the Wild

Related tags

Deep Learningurie
Overview

URIE: Universal Image Enhancementfor Visual Recognition in the Wild

This is the implementation of the paper "URIE: Universal Image Enhancement for Visual Recognition in the Wild" by T. Son, J. Kang, N. Kim, S. Cho and S. Kwak. Implemented on Python 3.7 and PyTorch 1.3.1.

urie_arch

For more information, check our project website and the paper on arxiv.

Requirements

You can install dependencies using

pip install -r requirements.txt

Datasets

You need to manually configure following environment variables to run the experiments.
All validation csv contains fixed combination of image, corruption and severity to guarantee the same result.
To conduct validation, you may need to change home folder path in each csv files given.

# DATA PATHS
export IMAGENET_ROOT=PATH_TO_IMAGENET
export IMAGENET_C_ROOT=PATH_TO_IMAGENET_C

# URIE VALIDATION

## ILSVRC VALIDATION
export IMAGENET_CLN_TNG_CSV=PROJECT_PATH/imagenet_dataset/imagenet_cln_train.csv
export IMAGENET_CLN_VAL_CSV=PROJECT_PATH/imagenet_dataset/imagenet_cln_val.csv
export IMAGENET_TNG_VAL_CSV=PROJECT_PATH/imagenet_dataset/imagenet_tng_tsfrm_validation.csv
export IMAGENET_VAL_VAL_CSV=PROJECT_PATH/imagenet_dataset/imagenet_val_tsfrm_validation.csv

## CUB VALIDATION
export CUB_IMAGE=PATH_TO_CUB
export DISTORTED_CUB_IMAGE=PATH_TO_CUB_C
export CUB_TNG_LABEL=PROJECT_PATH/datasets/eval_set/label_train_cub200_2011.csv
export CUB_VAL_LABEL=PROJECT_PATH/datasets/eval_set/label_val_cub200_2011.csv
export CUB_TNG_TRAIN_VAL=PROJECT_PATH/datasets/eval_set/tng_tsfrm_validation.csv
export CUB_TNG_TEST_VAL=PROJECT_PATH/datasets/eval_set/val_tsfrm_validation.csv

ILSVRC2012 Dataset

You can download the dataset from here and use it for training.

CUB dataset

You can download the original Caltech-UCSD Birds-200-2011 dataset from here, and corrupted version of CUB dataset from here.

Training

Training URIE with the proposed method on ILSVRC2012 dataset

python train_urie.py --batch_size BATCH_SIZE \
                     --cuda \
                     --test_batch_size BATCH_SIZE \
                     --epochs 60 \
                     --lr 0.0001 \
                     --seed 5000 \
                     --desc DESCRIPTION \
                     --save SAVE_PATH \
                     --load_classifier \
                     --dataset ilsvrc \
                     --backbone r50 \
                     --multi

Since training on ILSVRC dataset takes too long, you can train / test the model with cub dataset with following command.

python train_urie.py --batch_size BATCH_SIZE \
                     --cuda \
                     --test_batch_size BATCH_SIZE \
                     --epochs 60 \
                     --lr 0.0001 \
                     --seed 5000 \
                     --desc DESCRIPTION \
                     --save SAVE_PATH \
                     --load_classifier \
                     --dataset cub \
                     --backbone r50 \
                     --multi

Validation

You may use our pretrained model to validate or compare the results.

Classification

python inference.py --srcnn_pretrained_path PROJECT_PATH/ECCV_MODELS/ECCV_SKUNET_OURS.ckpt.pt \
                    --dataset DATASET \
                    --test_batch_size 32 \
                    --enhancer ours \
                    --recog r50

Detection

We have conducted object detection experiments using the codes from github.
You may compare the performance with the same evaluation code with attaching our model (or yours) in front of the detection model.

For valid comparison, you need to preprocess your data with mean and standard deviation.

Semantic Segmentation

We have conducted semantic segmentation experiments using the codes from github.
For backbone segmentation network, please you pretrained deeplabv3 on pytorch. You may compare the performance with the same evaluation code with attaching our model (or yours) in front of the segmentation model.

For valid comparison, you need to preprocess your data with mean and standard deviation.

Image Comparison

If you want just simple before & output image comparison, you can use render.py as following command.

python render.py IMAGE_FILE_PATH

Comparison
It runs given image file through pretrained URIE model, and saves enhanced output image comparison in current project file as "output.jpg".

BibTeX

If you use this code for your research, please consider citing:

@InProceedings{son2020urie,
  title={URIE: Universal Image Enhancement for Visual Recognition in the Wild},
  author={Son, Taeyoung and Kang, Juwon and Kim, Namyup and Cho, Sunghyun and Kwak, Suha},
  booktitle={ECCV},
  year={2020}
}
Owner
Taeyoung Son
Graduate student at POSTECH, South Korea
Taeyoung Son
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
Software Platform for solving and manipulating multiparametric programs in Python

PPOPT Python Parametric OPtimization Toolbox (PPOPT) is a software platform for solving and manipulating multiparametric programs in Python. This pack

10 Sep 13, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022