Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Overview

Light Field Networks

Project Page | Paper | Data | Pretrained Models

Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Durand
MIT, *denotes equal contribution

This is the official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering".

lfns_video

Get started

You can set up a conda environment with all dependencies like so:

conda env create -f environment.yml
conda activate siren

High-Level structure

The code is organized as follows:

  • multiclass_dataio.py and dataio.py contain the dataio for mutliclass- and single-class experiments respectively.
  • models.py contains the code for light field networks.
  • training.py contains a generic training routine.
  • ./experiment_scripts/ contains scripts to reproduce experiments in the paper.

Reproducing experiments

The directory experiment_scripts contains one script per experiment in the paper.

train_single_class.py trains a model on classes in the Scene Representation Networks format, such as cars or chairs. Note that since these datasets have a resolution of 128, this model starts with a lower resolution (64) and then increases the resolution to 128 (see line 43 in the script).

train_nmr.py trains a model on the NMR dataset. An example call is:

python experiment_scripts/train_nmr.py --data_root=path_to_nmr_dataset
python experiment_scripts/train_single_class.py --data_root=path_to_single_class

To reconstruct test objects, use the scripts "rec_single_class.py" and "rec_nmr.py". In addition to the data root, you have to point these scripts to the checkpoint from the training run. Note that the rec_nmr.py script uses the viewlist under ./experiment_scripts/viewlists/src_dvr.txt to pick which views to reconstruct the objects from, while rec_single_class.py per default reconstructs from the view with index 64.

python experiment_scripts/rec_nmr.py --data_root=path_to_nmr_dataset --checkpoint=path_to_training_checkpoint
python experiment_scripts/rec_single_class.py --data_root=path_to_single_class_TEST_SET --checkpoint=path_to_training_checkpoint

Finally, you may test the models on the test set with the test.py script. This script is used for testing all the models. You have to pass it as a parameter which dataset you are reconstructing ("NMR" or no). For the NMR dataset, you need to pass the "viewlist" again to make sure that the model is not evaluated on the context view.

python experiment_scripts/test.py --data_root=path_to_nmr_dataset --dataset=NMR --checkpoint=path_to_rec_checkpoint
python experiment_scripts/test.py --data_root=path_to_single_class_TEST_SET --dataset=single --checkpoint=path_to_rec_checkpoint

To monitor progress, both the training and reconstruction scripts write tensorboard summaries into a "summaries" subdirectory in the logging_root.

Bells & whistles

This code has a bunch of options that were not discussed in the paper.

  • switch between a ReLU network and a SIREN to better fit high-frequency content with the flag --network (see the init of model.py for options).
  • switch between a hypernetwork, conditioning via concatenation, and low-rank concditioning with the flag --conditioning
  • there is an implementation of encoder-based inference in models.py (LFEncoder) which uses a ResNet18 with global conditioning to generate the latent codes z.

Data

We use two types of datasets: class-specific ones and multi-class ones.

Coordinate and camera parameter conventions

This code uses an "OpenCV" style camera coordinate system, where the Y-axis points downwards (the up-vector points in the negative Y-direction), the X-axis points right, and the Z-axis points into the image plane. Camera poses are assumed to be in a "camera2world" format, i.e., they denote the matrix transform that transforms camera coordinates to world coordinates.

Misc

Citation

If you find our work useful in your research, please cite:

@inproceedings{sitzmann2021lfns,
               author = {Sitzmann, Vincent
                         and Rezchikov, Semon
                         and Freeman, William T.
                         and Tenenbaum, Joshua B.
                         and Durand, Fredo},
               title = {Light Field Networks: Neural Scene Representations
                        with Single-Evaluation Rendering},
               booktitle = {Proc. NeurIPS},
               year={2021}
            }

Contact

If you have any questions, please email Vincent Sitzmann at [email protected].

Owner
Vincent Sitzmann
Incoming Assistant Professor @mit EECS. I'm researching neural scene representations - the way neural networks learn to represent information on our world.
Vincent Sitzmann
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
Keras Realtime Multi-Person Pose Estimation - Keras version of Realtime Multi-Person Pose Estimation project

This repository has become incompatible with the latest and recommended version of Tensorflow 2.0 Instead of refactoring this code painfully, I create

M Faber 769 Dec 08, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023