An Unsupervised Graph-based Toolbox for Fraud Detection

Overview



Building GitHub Downloads Pypi version

An Unsupervised Graph-based Toolbox for Fraud Detection

Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates several state-of-the-art graph-based fraud detection algorithms. It can be applied to bipartite graphs (e.g., user-product graph), and it can estimate the suspiciousness of both nodes and edges. The implemented models can be found here.

The toolbox incorporates the Markov Random Field (MRF)-based algorithm, dense-block detection-based algorithm, and SVD-based algorithm. For MRF-based algorithms, the users only need the graph structure and the prior suspicious score of the nodes as the input. For other algorithms, the graph structure is the only input.

Meanwhile, we have a deep graph-based fraud detection toolbox which implements state-of-the-art graph neural network-based fraud detectors.

We welcome contributions on adding new fraud detectors and extending the features of the toolbox. Some of the planned features are listed in TODO list.

If you use the toolbox in your project, please cite the paper below and the algorithms you used :

@inproceedings{dou2020robust,
  title={Robust Spammer Detection by Nash Reinforcement Learning},
  author={Dou, Yingtong and Ma, Guixiang and Yu, Philip S and Xie, Sihong},
  booktitle={Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
  year={2020}
}

Useful Resources

Table of Contents

Installation

You can install UGFraud from pypi:

pip install UGFraud

or download and install from github:

git clone https://github.com/safe-graph/UGFraud.git
cd UGFraud
python setup.py install

Dataset

The demo data is not the intact data (rating and date information are missing). The rating information is only used in ZooBP demo. If you need the intact date to play demo, please email [email protected] to download the intact data from Yelp Spam Review Dataset. The metadata.gz file in /UGFraud/Yelp_Data/YelpChi includes:

  • user_id: 38063 number of users
  • product_id: 201 number of products
  • rating: from 1.0 (low) to 5.0 (high)
  • label: -1 is not spam, 1 is spam
  • date: data creation time

User Guide

Running the example code

You can find the implemented models in /UGFraud/Demo directory. For example, you can run fBox using:

python eval_fBox.py 

Running on your datasets

Have a look at the /UGFraud/Demo/data_to_network_graph.py to convert your data into the networkx graph.

In order to use your own data, you have to provide the following information at least:

  • a dict of dict:
'user_id':{
        'product_id':
                {
                'label': 1
                }
  • a dict of prior

You can use dict_to networkx(graph_dict) function from /Utils/helper.py file to convert your graph_dict into a networkx graph. For more details, please see data_to_network_graph.py.

The structure of code

The /UGFraud repository is organized as follows:

  • Demo/ contains the implemented models and the corresponding example code;
  • Detector/ contains the basic models;
  • Yelp_Data/ contains the necessary dataset files;
  • Utils/ contains the every help functions.

Implemented Models

Model Paper Venue Reference
SpEagle Collective Opinion Spam Detection: Bridging Review Networks and Metadata KDD 2015 BibTex
GANG GANG: Detecting Fraudulent Users in Online Social Networks via Guilt-by-Association on Directed Graph ICDM 2017 BibTex
fBox Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective ICDM 2014 BibTex
Fraudar FRAUDAR: Bounding Graph Fraud in the Face of Camouflage KDD 2016 BibTex
ZooBP ZooBP: Belief Propagation for Heterogeneous Networks VLDB 2017 BibTex
SVD Singular value decomposition and least squares solutions - BibTex
Prior Evaluating suspicioueness based on prior information - -

Model Comparison

Model Application Graph Type Model Type
SpEagle Review Spam Tripartite MRF
GANG Social Sybil Bipartite MRF
fBox Social Fraudster Bipartite SVD
Fraudar Social Fraudster Bipartite Dense-block
ZooBP E-commerce Fraud Tripartite MRF
SVD Dimension Reduction Bipartite SVD

TODO List

  • Homogeneous graph implementation

How to Contribute

You are welcomed to contribute to this open-source toolbox. Currently, you can create issues or send email to [email protected] for inquiry.

You might also like...
OBBDetection: an oriented object detection toolbox modified from MMdetection
OBBDetection: an oriented object detection toolbox modified from MMdetection

OBBDetection note: If you have questions or good suggestions, feel free to propose issues and contact me. introduction OBBDetection is an oriented obj

A Python Library for Graph Outlier Detection (Anomaly Detection)
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility functions that allow writing model-based RL algorithms with only a few lines of code.

Deep learning toolbox based on PyTorch for hyperspectral data classification.
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

MMFlow is an open source optical flow toolbox based on PyTorch
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

Comments
  •  cannot import name 'Detector' most likely due to a circular import

    cannot import name 'Detector' most likely due to a circular import

    Performing a simple import as outlined in testing.py

    import sys
    import os
    __file__ = "~/env/lib/python3.8/site-packages/UGFraud"
    sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
    from UGFraud.Demo.eval_fBox import *
    

    However, this produces the below error:

    ---------------------------------------------------------------------------
    ImportError                               Traceback (most recent call last)
    ~/env/lib/python3.8/site-packages/UGFraud in <module>
          3 __file__ = "~/env/lib/python3.8/site-packages/UGFraud"
          4 sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
    ----> 5 from UGFraud.Demo.eval_fBox import *
    
    ~/miniconda3/lib/python3.8/site-packages/UGFraud/__init__.py in <module>
          1 # -*- coding: utf-8 -*-
          2 
    ----> 3 from . import Detector
          4 from . import Utils
          5 
    
    ImportError: cannot import name 'Detector' from partially initialized module 'UGFraud' (most likely due to a circular import) (~/miniconda3/lib/python3.8/site-packages/UGFraud/__init__.py)
    
    opened by ragyibrahim 1
Releases(v0.1.0)
Owner
SafeGraph
Towards Secure Machine Learning on Graph Data
SafeGraph
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Voice2Series-Reprogramming Voice2Series: Reprogramming Acoustic Models for Time Series Classification International Conference on Machine Learning (IC

49 Jan 03, 2023
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se

Cornell Zhang Research Group 39 Dec 13, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022