AI grand challenge 2020 Repo (Speech Recognition Track)

Overview

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지)

본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다.

본 개발자들이 참여한 2020 인공지능 그랜드 챌린지 4차 대회는 인공지능 기술을 활용하여 다양한 지역사회의 국민생활 및 사회현안을 대응하는 과제입니다. 그중 음성인지 트랙은 음성 클립에서 위협상황을 검출하고 해당 위협 상황을 구분하는 것이 목표로 하고 있습니다. 아래의 표는 본 대회에서 정의한 4가지의 폭력 Class이며 아래의 4가지 폭력 Class 외에 비폭력 Class가 추가되어 총 5개 Class의 폭력 또는 비폭력을 분류하는 것이 주된 목적입니다.

< 음성인지 분류대상 정의 >

추가적으로, 본 개발자들은 ETRI에서 작성된 사용협약서에 준수하여 pretrained 모델 및 정보에 관한 내용은 공개하지 않습니다. 해당 프로젝트를 쉽게 활용하기 위해서는 ETRI에서 제공하는 API를 활용하시면 되며, 다음 링크에서 서약서를 작성 후 키와 코드를 다운받으시면 되십니다. 본 프로젝트는 대회에서 적용한 여러 분류 모델들을 제공하며 앞서 다운로드한 ETRI에서 제공된 형태소 분석기와 토큰화를 사용하여 쉽게 실습할 수 있습니다.

분류 모델

Requirements

Python 3.7

Pytorch == 1.5.0

boto3

botocore

tqdm

requests

Models

본 프로젝트는 4가지의 분류 모델(MLP, CNN, LSTM, Bi-LSTM)을 활용하였습니다. 아래는 활용된 모델들의 전체적인 시나리오를 보여주는 개요도입니다.

1. MLP

< 활용된 MLP 모델 >

2. CNN

CNN은 해당 논문을 참고하였습니다. 더 자세한 내용은 논문에서 확인할 수 있습니다.

< 활용된 CNN 모델 >

3. LSTM

< 활용된 LSTM 모델 >

4. Bi-LSTM

< 활용된 Bi-LSTM 모델 >

Results

본 대회에서는 분류 결과를 Macro-F1 score에 의해 평가하였으며, Macro-F1 score는 아래와 같이 정의합니다. 이때, i는 각각의 폭력 및 비폭력 Class를 의미합니다.

< Macro-F1 Score >

위 식을 토대로, 저희의 분류 아래의 결과는 2020 인공지능 그랜드 챌린지 4차 대회 음성인지 트랙에서 본 팀에 대한 결과이며, 주최 측에서 테스트 데이터는 공개하지 않아 확인할 수 없습니다.

Model MLP [1] CNN [2] LSTM [3] Bi-LSTM [4]
Macro F1-Score 0.7029 0.615 0.7157 0.6935
Owner
Young-Seok Choi
Young-Seok Choi
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021