ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Overview

Voice2Series-Reprogramming

Voice2Series: Reprogramming Acoustic Models for Time Series Classification

  • International Conference on Machine Learning (ICML), 2021 | Paper | Colab Demo

Environment

Tensorflow 2.2 (CUDA=10.0) and Kapre 0.2.0.

  • Noted: Echo to many interests from the community, we will also provide Pytorch V2S layers and frameworks around this September, incoperating the new torch audio layers. Feel free to email the authors for further collaboration.

  • option 1 (from yml)

conda env create -f V2S.yml
  • option 2 (from clean python 3.6)
pip install tensorflow-gpu==2.1.0
pip install kapre==0.2.0
pip install h5py==2.10.0

Training

  • This is tengible Version. Please also check the paper for actual validation details. Many Thanks!
python v2s_main.py --dataset 0 --eps 100 --mapping 3
  • Result
seg idx: 0 --> start: 0, end: 500
seg idx: 1 --> start: 5000, end: 5500
seg idx: 2 --> start: 10000, end: 10500
Tensor("AddV2_2:0", shape=(None, 16000, 1), dtype=float32)
--- Preparing Masking Matrix
Model: "model_1"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 500, 1)]     0                                            
__________________________________________________________________________________________________
zero_padding1d (ZeroPadding1D)  (None, 16000, 1)     0           input_1[0][0]                    
__________________________________________________________________________________________________
tf_op_layer_AddV2 (TensorFlowOp [(None, 16000, 1)]   0           zero_padding1d[0][0]             
__________________________________________________________________________________________________
zero_padding1d_1 (ZeroPadding1D (None, 16000, 1)     0           input_1[0][0]                    
__________________________________________________________________________________________________
tf_op_layer_AddV2_1 (TensorFlow [(None, 16000, 1)]   0           tf_op_layer_AddV2[0][0]          
                                                                 zero_padding1d_1[0][0]           
__________________________________________________________________________________________________
zero_padding1d_2 (ZeroPadding1D (None, 16000, 1)     0           input_1[0][0]                    
__________________________________________________________________________________________________
tf_op_layer_AddV2_2 (TensorFlow [(None, 16000, 1)]   0           tf_op_layer_AddV2_1[0][0]        
                                                                 zero_padding1d_2[0][0]           
__________________________________________________________________________________________________
art_layer (ARTLayer)            (None, 16000, 1)     16000       tf_op_layer_AddV2_2[0][0]        
__________________________________________________________________________________________________
reshape_1 (Reshape)             (None, 16000)        0           art_layer[0][0]                  
__________________________________________________________________________________________________
model (Model)                   (None, 36)           1292911     reshape_1[0][0]                  
__________________________________________________________________________________________________
tf_op_layer_MatMul (TensorFlowO [(None, 6)]          0           model[1][0]                      
__________________________________________________________________________________________________
tf_op_layer_Shape (TensorFlowOp [(2,)]               0           tf_op_layer_MatMul[0][0]         
__________________________________________________________________________________________________
tf_op_layer_strided_slice (Tens [()]                 0           tf_op_layer_Shape[0][0]          
__________________________________________________________________________________________________
tf_op_layer_Reshape_2/shape (Te [(3,)]               0           tf_op_layer_strided_slice[0][0]  
__________________________________________________________________________________________________
tf_op_layer_Reshape_2 (TensorFl [(None, 2, 3)]       0           tf_op_layer_MatMul[0][0]         
                                                                 tf_op_layer_Reshape_2/shape[0][0]
__________________________________________________________________________________________________
tf_op_layer_Mean (TensorFlowOpL [(None, 2)]          0           tf_op_layer_Reshape_2[0][0]      
==================================================================================================
Total params: 1,308,911
Trainable params: 217,225
Non-trainable params: 1,091,686
__________________________________________________________________________________________________
Epoch 1/100
2021-07-19 01:43:32.690913: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2021-07-19 01:43:32.919343: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
113/113 [==============================] - 6s 50ms/step - loss: 0.0811 - accuracy: 1.0000 - val_loss: 1.5589e-04 - val_accuracy: 1.0000
Epoch 2/100
113/113 [==============================] - 5s 41ms/step - loss: 5.0098e-05 - accuracy: 1.0000 - val_loss: 1.0906e-05 - val_accuracy: 1.0000

Class Activation Mapping

python cam_v2s.py --dataset 5 --weight wNo5_map6-88-0.7662.h5 --mapping 6 --layer conv2d_1

Reference

  • Voice2Series: Reprogramming Acoustic Models for Time Series Classification
@InProceedings{pmlr-v139-yang21j,
  title = 	 {Voice2Series: Reprogramming Acoustic Models for Time Series Classification},
  author =       {Yang, Chao-Han Huck and Tsai, Yun-Yun and Chen, Pin-Yu},
  booktitle = 	 {Proceedings of the 38th International Conference on Machine Learning},
  pages = 	 {11808--11819},
  year = 	 {2021},
  volume = 	 {139},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {18--24 Jul},
  publisher =    {PMLR},
}
Owner
Speech, Reinforcement Learning, and Causal Inference.
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

NVIDIA AI IOT 358 Jan 02, 2023