Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Overview

Weakly- and Semi-Supervised Panoptic Segmentation

by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr

This repository demonstrates the weakly supervised ground truth generation scheme presented in our paper Weakly- and Semi-Supervised Panoptic Segmentation published at ECCV 2018. The code has been cleaned-up and refactored, and should reproduce the results presented in the paper.

For details, please refer to our paper, and project page. Please check the Downloads section for all the additional data we release.

Summary

* Equal first authorship

Introduction

In our weakly-supervised panoptic segmentation experiments, our models are supervised by 1) image-level tags and 2) bounding boxes, as shown in the figure above. We used image-level tags as supervision for "stuff" classes which do not have a defined extent and cannot be described well by tight bounding boxes. For "thing" classes, we used bounding boxes as our weak supervision. This code release clarifies the implementation details of the method presented in the paper.

Iterative ground truth generation

For readers' convenience, we will give an outline of the proposed iterative ground truth generation pipeline, and provide demos for some of the key steps.

  1. We train a multi-class classifier for all classes to obtain rough localisation cues. As it is not possible to fit an entire Cityscapes image (1024x2048) into a network due to GPU memory constraints, we took 15 fixed 400x500 crops per training image, and derived their classification ground truth accordingly, which we use to train the multi-class classifier. From the trained classifier, we extract the Class Activation Maps (CAMs) using Grad-CAM, which has the advantage of being agnostic to network architecture over CAM.

    • Download the fixed image crops with image-level tags here to train your own classifier. For convenience, the pixel-level semantic label of the crops are also included, though they should not be used in training.
    • The CAMs we produced are available for download here.
  2. In parallel, we extract bounding box annotations from Cityscapes ground truth files, and then run MCG (a segment-proposal algorithm) and Grabcut (a classic foreground segmentation technique given a bounding-box prior) on the training images to generate foreground masks inside each annotated bounding box. MCG and Grabcut masks are merged following the rule that only regions where both have consensus are given the predicted label; otherwise an "ignore" label is assigned.

    • The extracted bounding boxes (saved in .mat format) can be downloaded here. Alternatively, we also provide a demo script demo_instanceTrainId_to_dets.m and a batch script batch_instanceTrainId_to_dets.m for you to make them yourself. The demo is self-contained; However, before running the batch script, make sure to
      1. Download the official Cityscapes scripts repository;

      2. Inside the above repository, navigate to cityscapesscripts/preparation and run

        python createTrainIdInstanceImgs.py

        This command requires an environment variable CITYSCAPES_DATASTET=path/to/your/cityscapes/data/folder to be set. These two steps produce the *_instanceTrainIds.png files required by our batch script;

      3. Navigate back to this repository, and place/symlink your gtFine and gtCoarse folders inside data/Cityscapes/ folder so that they are visible to our batch script.

    • Please see here for details on MCG.
    • We use the OpenCV implementation of Grabcut in our experiments.
    • The merged M&G masks we produced are available for download here.
  3. The CAMs (step 1) and M&G masks (step 2) are merged to produce the ground truth needed to kick off iterative training. To see a demo of merging, navigate to the root folder of this repo in MATLAB and run:

     demo_merge_cam_mandg;

    When post-processing network predictions of images from the Cityscapes train_extra split, make sure to use the following settings:

    opts.run_apply_bbox_prior = false;
    opts.run_check_image_level_tags = false;
    opts.save_ins = false;

    because the coarse annotation provided on the train_extra split trades off recall for precision, leading to inaccurate bounding box coordinates, and frequent occurrences of false negatives. This also applies to step 5.

    • The results from merging CAMs with M&G masks can be downloaded here.
  4. Using the generated ground truth, weakly-supervised models can be trained in the same way as a fully-supervised model. When the training loss converges, we make dense predictions using the model and also save the prediction scores.

    • An example of dense prediction made by a weakly-supervised model is included at results/pred_sem_raw/, and an example of the corresponding prediction scores is provided at results/pred_flat_feat/.
  5. The prediction and prediction scores (and optionally, the M&G masks) are used to generate the ground truth labels for next stage of iterative training. To see a demo of iterative ground truth generation, navigate to the root folder of this repo in MATLAB and run:

    demo_make_iterative_gt;

    The generated semantic and instance ground truth labels are saved at results/pred_sem_clean and results/pred_ins_clean respectively.

    Please refer to scripts/get_opts.m for the options available. To reproduce the results presented in the paper, use the default setting, and set opts.run_merge_with_mcg_and_grabcut to false after five iterations of training, as the weakly supervised model by then produces better quality segmentation of ''thing'' classes than the original M&G masks.

  6. Repeat step 4 and 5 until training loss no longer reduces.

Downloads

  1. Image crops and tags for training multi-class classifier:
  2. CAMs:
  3. Extracted Cityscapes bounding boxes (.mat format):
  4. Merged MCG&Grabcut masks:
  5. CAMs merged with MCG&Grabcut masks:

Note that due to file size limit set by BaiduYun, some of the larger files had to be split into several chunks in order to be uploaded. These files are named as filename.zip.part##, where filename is the original file name excluding the extension, and ## is a two digit part index. After you have downloaded all the parts, cd to the folder where they are saved, and use the following command to join them back together:

cat filename.zip.part* > filename.zip

The joining operation may take several minutes, depending on file size.

The above does not apply to files downloaded from Dropbox.

Reference

If you find the code helpful in your research, please cite our paper:

@InProceedings{Li_2018_ECCV,
    author = {Li, Qizhu and 
              Arnab, Anurag and 
              Torr, Philip H.S.},
    title = {Weakly- and Semi-Supervised Panoptic Segmentation},
    booktitle = {The European Conference on Computer Vision (ECCV)},
    month = {September},
    year = {2018}
}

Questions

Please contact Qizhu Li [email protected] and Anurag Arnab [email protected] for enquires, issues, and suggestions.

Owner
Qizhu Li
Capable of living on land, but prefers to stay in water.
Qizhu Li
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022