Python library for tracking human heads with FLAME (a 3D morphable head model)

Overview

Video Head Tracker

Teaser image

3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It determines FLAMEs shape and texture parameters as well as spherical harmonics lights and camera intrinsics for a video sequence. Afterwards, expressions and poses (rigid, neck, jaw, eyes) are optimized for each frame of the video. The only inputs are an RGB video together with facial and iris landmarks. The latter is estimated by our code automatically.

This repository complements the code release of the CVPR2022 paper Neural Head Avatars from Monocular RGB Videos. The code is maintained independently from the paper's code to ease reusing it in other projects.

Installation

  • Install Python 3.9 (it should work with other versions as well, but the setup.py and dependencies must be adjusted to do so).
  • Clone the repo and run pip install -e . from inside the cloned directory.
  • Download the flame head model and texture space from the from the official website and add them as generic_model.pkl and FLAME_texture.npz under ./assets/flame.
  • Finally, go to https://github.com/HavenFeng/photometric_optimization and copy the uv parametrization head_template_mesh.obj of FLAME found there to ./assets/flame, as well.

Usage

To run the tracker on a video run

python vht/optimize_tracking.py --config your_config.ini --video path_to_video --data_path path_to_data

The video path and data path can also be given inside the config file. In general, all parameters in the config file may be overwritten by providing them on the command line explicitly. If a video path is given, the video will be extracted and facial + iris landmarks are predicted for each frame. The frames and landmarks are stored at --data_path. Once extracted, you can reuse them by not passing the --video flag anymore. We provide config file for two identities tracked in the main paper. The video data for these subjects can be downloaded from the paper repository. These configs provide good defaults for other videos, as well.

If you would like to use your own videos, the following parameters are most important to set:

[dataset]
data_path = PATH_TO_DATASET --> discussed above

[training]
output_path = OUTPUT_PATH --> where the results will be stored
keyframes = [90, 415, 434, 193] --> list of frames used to optimize shape, texture, lights and camera
                                --> ideally, you provide one front, one left and one right view

The optimized parameters are stored in the output directory as tracked_flame_params.npz.

License

The code is available for non-commercial scientific research purposes under the CC BY-NC 3.0 license. Please note that the files flame.py and lbs.py are heavily inspired by https://github.com/HavenFeng/photometric_optimization and are property of the Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. The download, use, and distribution of this code is subject to this license. The files that can be found in the ./assets directory, are adapted from the FLAME head model for which the license can be found here.

Citation

If you find our work useful, please include the following citation:

@article{grassal2021neural,
  title={Neural Head Avatars from Monocular RGB Videos},
  author={Grassal, Philip-William and Prinzler, Malte and Leistner, Titus and Rother, Carsten
          and Nie{\ss}ner, Matthias and Thies, Justus},
  journal={arXiv preprint arXiv:2112.01554},
  year={2021}
}

Acknowledgements

This project has received funding from the DFG in the joint German-Japan-France grant agreement (RO 4804/3-1) and the ERC Starting Grant Scan2CAD (804724). We also thank the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for generous allocations of computer time.

On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
Özlem Taşkın 0 Feb 23, 2022
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
MogFace: Towards a Deeper Appreciation on Face Detection

MogFace: Towards a Deeper Appreciation on Face Detection Introduction In this repo, we propose a promising face detector, termed as MogFace. Our MogFa

48 Dec 20, 2022