This repository contains tutorials for the py4DSTEM Python package

Overview
Comments
  • Binder dev

    Binder dev

    • Binder link created, currently lands in Index.ipynb
    • data loaded as part of the notebooks, running all cells on notebooks inside binder will work.
    • Added file_getter.py which takes command-line arguments, which makes extending the download to more notebooks fairly straightforward.
    • Both notebooks work, make_probe_templates.ipynb required adding some clean-up steps to avoid going over 2GB ram limit, the alternative is to split them into more separate notebooks.
    • There's a slight issue that if people don't shutdown notebooks properly or if they have multiple notebooks over, they may cause kernel panics, both notebooks peak memory usage push the 2GB limit .
    • I haven't given much attention to style or formatting currently just wanted to get something functional and working to see if works as required.
    opened by alex-rakowski 1
  • SSB tutorial notebooks with new dataset

    SSB tutorial notebooks with new dataset

    These are two new tutorial notebooks I updated. One is for single-run reconstruction, the other is for interactive mode with ipywidgets and matplotlib visualization.

    opened by PhilippPelz 0
  • Binder dev

    Binder dev

    • Binder link created, currently lands in Index.ipynb
    • data loaded as part of the notebooks, running all cells on notebooks inside binder will work.
    • Added file_getter.py which takes command-line arguments, which makes extending the download to more notebooks fairly straightforward.
    • Both notebooks work, make_probe_templates.ipynb required adding some clean-up steps to avoid going over 2GB ram limit, the alternative is to split them into more separate notebooks.
    • There's a slight issue that if people don't shutdown notebooks properly or if they have multiple notebooks over, they may cause kernel panics, both notebooks peak memory usage push the 2GB limit .
    • I haven't given much attention to style or formatting currently just wanted to get something functional and working to see if works as required.
    opened by alex-rakowski 0
  • Add simulations for dynamical scattering

    Add simulations for dynamical scattering

    I found that there is almost no proper documentation for the dynamical scattering simulation in py4DSTEM unless you read the source code (actually I couldn't find the documentation for the whole diffraction module). So I created a tutorial using NaCl as an example. Hope I have done it right.

    opened by Taimin 0
  • py4DSTEM.process.virtualimage.get_virtualimage_circ (strain mapping tutorial)

    py4DSTEM.process.virtualimage.get_virtualimage_circ (strain mapping tutorial)

    in the strain mapping tutorial, this step doesn't work !

    [12]

    Next, create a BF virtual detector using the the center beam position (qxy0, qy0)

    We will expand the BF radius slightly (+ 2 px).

    The DF virtual detector can be set to all remaining pixels.

    expand_BF = 2.0 image_BF = py4DSTEM.process.virtualimage.get_virtualimage_circ( dataset, qx0, qy0, probe_semiangle + expand_BF) image_DF = py4DSTEM.process.virtualimage.get_virtualimage_ann( dataset, qx0, qy0, probe_semiangle + expand_BF, 1e3)

    [return]

    AttributeError Traceback (most recent call last) Input In [168], in <cell line: 5>() 1 # Next, create a BF virtual detector using the the center beam position (qxy0, qy0) 2 # We will expand the BF radius slightly (+ 2 px). 3 # The DF virtual detector can be set to all remaining pixels. 4 expand_BF = 2.0 ----> 5 image_BF = py4DSTEM.process.get_virtualimage_circ( 6 dataset, 7 qx0, qy0, 8 probe_semiangle + expand_BF) 9 image_DF = py4DSTEM.process.virtualimage.get_virtualimage_ann( 10 dataset, 11 qx0, qy0, 12 probe_semiangle + expand_BF, 13 1e3)

    AttributeError: module 'py4DSTEM.process' has no attribute 'get_virtualimage_circ'

    Any tips to fix that ?

    py4DSTEM.process.virtualimage.virtualimage.get_virtualimage_circ or py4DSTEM.process.virtualimage.get_virtualimage_circ ?

    opened by lylofu 0
  • ACOM_03_Au_NP_sim.ipynb bugs

    ACOM_03_Au_NP_sim.ipynb bugs

    Running the ACOM_03 notebook as downloaded, cell 25 gives the following error:

    ---------------------------------------------------------------------------
    NameError                                 Traceback (most recent call last)
    /var/folders/ts/tq6v7mks7hvg37ys5zvs1c2w0000gn/T/ipykernel_3012/3733081456.py in <module>
         14 
         15 # Fit an ellipse to the elliptically corrected bvm
    ---> 16 qx0_corr,qy0_corr,a_corr,e_corr,theta_corr = py4DSTEM.process.calibration.fit_ellipse_1D(bvm_ellipsecorr,(qx0,qy0),(qmin,qmax))
         17 
         18 py4DSTEM.visualize.show_elliptical_fit(
    
    NameError: name 'qmin' is not defined
    

    I think someone changed qmin, qmax to be a list called qrange and never actually tested the notebook in a fresh state.

    opened by sezelt 0
  • AttributeError: module 'py4DSTEM.process' has no attribute 'diffraction'

    AttributeError: module 'py4DSTEM.process' has no attribute 'diffraction'

    When I run the "ACOM Tutorial Notebook 01", it gives a following error message.

    AttributeError: module 'py4DSTEM.process' has no attribute 'diffraction'

    version python 3.8.0 py4DSTEM 0.12.6 pywin32 302

    error

    opened by nomurayuki0503 0
Releases(v0.13.8-alpha)
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
An adaptive hierarchical energy management strategy for hybrid electric vehicles

An adaptive hierarchical energy management strategy This project contains the source code of an adaptive hierarchical EMS combining heuristic equivale

19 Dec 13, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022