A different spin on dataclasses.

Overview

dataklasses

Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it:

from dataklasses import dataklass

@dataklass
class Coordinates:
    x: int
    y: int

The resulting class works in a well civilised way, providing the usual __init__(), __repr__(), and __eq__() methods that you'd normally have to type out by hand:

>>> a = Coordinates(2, 3)
>>> a
Coordinates(2, 3)
>>> a.x
2
>>> a.y
3
>>> b = Coordinates(2, 3)
>>> a == b
True
>>>

It's easy! Almost too easy.

Wait, doesn't this already exist?

No, it doesn't. Yes, certain naysayers will be quick to point out the existence of @dataclass from the standard library. Ok, sure, THAT exists. However, it's slow and complicated. Dataklasses are neither of those things. The entire dataklasses module is less than 100 lines. The resulting classes import 15-20 times faster than dataclasses. See the perf.py file for a benchmark.

Theory of Operation

While out walking with his puppy, Dave had a certain insight about the nature of Python byte-code. Coming back to the house, he had to try it out:

>>> def __init1__(self, x, y):
...     self.x = x
...     self.y = y
...
>>> def __init2__(self, foo, bar):
...     self.foo = foo
...     self.bar = bar
...
>>> __init1__.__code__.co_code == __init2__.__code__.co_code
True
>>>

How intriguing! The underlying byte-code is exactly the same even though the functions are using different argument and attribute names. Aha! Now, we're onto something interesting.

The dataclasses module in the standard library works by collecting type hints, generating code strings, and executing them using the exec() function. This happens for every single class definition where it's used. If it sounds slow, that's because it is. In fact, it defeats any benefit of module caching in Python's import system.

Dataklasses are different. They start out in the same manner--code is first generated by collecting type hints and using exec(). However, the underlying byte-code is cached and reused in subsequent class definitions whenever possible.

A Short Story

Once upon a time, there was this programming language that I'll refer to as "Lava." Anyways, anytime you started a program written in Lava, you could just tell by the awkward silence and inactivity of your machine before the fans kicked in. "Ah shit, this is written in Lava" you'd exclaim.

Questions and Answers

Q: What methods does dataklass generate?

A: By default __init__(), __repr__(), and __eq__() methods are generated. __match_args__ is also defined to assist with pattern matching.

Q: Does dataklass enforce the specified types?

A: No. The types are merely clues about what the value might be and the Python language does not provide any enforcement on its own.

Q: Are there any additional features?

A: No. You can either have features or you can have performance. Pick one.

Q: Does dataklass use any advanced magic such as metaclasses?

A: No.

Q: How do I install dataklasses?

A: There is no setup.py file, installer, or an official release. You install it by copying the code into your own project. dataklasses.py is small. You are encouraged to modify it to your own purposes.

Q: But what if new features get added?

A: What new features? The best new features are no new features.

Q: Who maintains dataklasses?

A: If you're using it, you do. You maintain dataklasses.

Q: Who wrote this?

A: dataklasses is the work of David Beazley. http://www.dabeaz.com.

Owner
David Beazley
Author of the Python Essential Reference (Addison-Wesley), Python Cookbook (O'Reilly), and former computer science professor. Come take a class!
David Beazley
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
Vision-and-Language Navigation in Continuous Environments using Habitat

Vision-and-Language Navigation in Continuous Environments (VLN-CE) Project Website — VLN-CE Challenge — RxR-Habitat Challenge Official implementations

Jacob Krantz 132 Jan 02, 2023