###################################################################
# #
# Structured Edge Detection Toolbox V3.0 #
# Piotr Dollar (pdollar-at-gmail.com) #
# #
###################################################################
1. Introduction.
Very fast edge detector (up to 60 fps depending on parameter settings) that achieves excellent accuracy. Can serve as input to any vision algorithm requiring high quality edge maps. Toolbox also includes the Edge Boxes object proposal generation method and fast superpixel code.
If you use the Structured Edge Detection Toolbox, we appreciate it if you cite an appropriate subset of the following papers:
@inproceedings{DollarICCV13edges,
author = {Piotr Doll\'ar and C. Lawrence Zitnick},
title = {Structured Forests for Fast Edge Detection},
booktitle = {ICCV},
year = {2013},
}
@article{DollarARXIV14edges,
author = {Piotr Doll\'ar and C. Lawrence Zitnick},
title = {Fast Edge Detection Using Structured Forests},
journal = {ArXiv},
year = {2014},
}
@inproceedings{ZitnickECCV14edgeBoxes,
author = {C. Lawrence Zitnick and Piotr Doll\'ar},
title = {Edge Boxes: Locating Object Proposals from Edges},
booktitle = {ECCV},
year = {2014},
}
###################################################################
2. License.
This code is published under the MSR-LA Full Rights License.
Please read license.txt for more info.
###################################################################
3. Installation.
a) This code is written for the Matlab interpreter (tested with versions R2013a-2013b) and requires the Matlab Image Processing Toolbox.
b) Additionally, Piotr's Matlab Toolbox (version 3.26 or later) is also required. It can be downloaded at:
https://pdollar.github.io/toolbox/.
c) Next, please compile mex code from within Matlab (note: win64/linux64 binaries included):
mex private/edgesDetectMex.cpp -outdir private [OMPPARAMS]
mex private/edgesNmsMex.cpp -outdir private [OMPPARAMS]
mex private/spDetectMex.cpp -outdir private [OMPPARAMS]
mex private/edgeBoxesMex.cpp -outdir private
Here [OMPPARAMS] are parameters for OpenMP and are OS and compiler dependent.
Windows: [OMPPARAMS] = '-DUSEOMP' 'OPTIMFLAGS="$OPTIMFLAGS' '/openmp"'
Linux V1: [OMPPARAMS] = '-DUSEOMP' CFLAGS="\$CFLAGS -fopenmp" LDFLAGS="\$LDFLAGS -fopenmp"
Linux V2: [OMPPARAMS] = '-DUSEOMP' CXXFLAGS="\$CXXFLAGS -fopenmp" LDFLAGS="\$LDFLAGS -fopenmp"
To compile without OpenMP simply omit [OMPPARAMS]; note that code will be single threaded in this case.
d) Add edge detection code to Matlab path (change to current directory first):
>> addpath(pwd); savepath;
e) Finally, optionally download the BSDS500 dataset (necessary for training/evaluation):
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
After downloading BSR/ should contain BSDS500, bench, and documentation.
f) A fully trained edge model for RGB images is available as part of this release. Additional models are available online, including RGBD/D/RGB models trained on the NYU depth dataset and a larger more accurate BSDS model.
###################################################################
4. Getting Started.
- Make sure to carefully follow the installation instructions above.
- Please see "edgesDemo.m", "edgeBoxesDemo" and "spDemo.m" to run demos and get basic usage information.
- For a detailed list of functionality see "Contents.m".
###################################################################
5. History.
Version NEW
- now hosting on github (https://github.com/pdollar/edges)
- suppress Mac warnings, added Mac binaries
- edgeBoxes: added adaptive nms variant described in arXiv15 paper
Version 3.01 (09/08/2014)
- spAffinities: minor fix (memory initialization)
- edgesDetect: minor fix (multiscale / multiple output case)
Version 3.0 (07/23/2014)
- added Edge Boxes code corresponding to ECCV paper
- added Sticky Superpixels code
- edge detection code unchanged
Version 2.0 (06/20/2014)
- second version corresponding to arXiv paper
- added sharpening option
- added evaluation and visualization code
- added NYUD demo and sweep support
- various tweaks/improvements/optimizations
Version 1.0 (11/12/2013)
- initial version corresponding to ICCV paper
###################################################################
Structured Edge Detection Toolbox
Overview
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification
Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering
Automatically download the cwru data set, and then divide it into training data set and test data set
Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集
An Approach to Explore Logistic Regression Models
User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat
Liver segmentation using MONAI and pytorch
Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021
Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co
A simple, fully convolutional model for real-time instance segmentation.
You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██
A multi-scale unsupervised learning for deformable image registration
A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha
基于DouZero定制AI实战欢乐斗地主
DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"
Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021
The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.
ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"
Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D
Neural Logic Inductive Learning
Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn
Suite of 500 procedurally-generated NLP tasks to study language model adaptability
TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page
Some bravo or inspiring research works on the topic of curriculum learning.
Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images
Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning
tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f
Learning Continuous Image Representation with Local Implicit Image Function
LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo