This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

Related tags

Deep LearningIB-GAN
Overview

The PyTorch implementation of IB-GAN model of AAAI 2021

This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial Networks) in AAAI 2021.

You can reproduce the experiment on dSprite (Color-dSprite, 3DChairs, and CelebA) dataset with the this code.

Current implementation is based on python==1.4.0. Please refer environments.yml for the environment settings.

Please refer to the Technical appendix page for more detailed information of hypter parameter settings for each experiment.

Contents

  • Main code for dsprites (and cdsprite): "main.py"

  • IB-GAN model for dsprites (and cdsprite): "./model/model.py"

  • Disentanglement Evaluation codes for dsprites (and cdsprite): "evaluator.py", "checkout_scores.ipynb"

  • Main code for 3d Chairs (and CelebA): "main2.py"

  • IB-GAN model for dsprites (and cdsprite): "./model/model2.py"

Visdom for visualization

Since the defulat visidom option for main.py is True, you first want to run Visidom server berfore excuting the main program by typing

python -m visdom.server -p 8097

Then you can observe the visualization of the "convergence plot and generated samples" for each training iterations from

localhost:8097

Reproducing dSprite experiment

  • dSprite dataset : "./data/dsprites-dataset/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz"

You can reproduce dSprite expreiment by typing:

python -W ignore main.py --seed 7 --z_dim 16 --r_dim 10 --batch_size 64 --optim rmsprop --dataset dsprites --viz True --viz_port 8097 --z_bias 0 --viz_name dsprites --beta 0.141 --alpha 1 --gamma 1 --G_lr 5e-5 --D_lr 1e-6 --max_iter 150000 --logiter 500 --ptriter 2500 --ckptiter 2500 --load_ckpt -1 --init_type normal --save_img True

Note, all the default parameter settings are optimally set up for the dSprite experiment (in the "main.py" file). For more details on the parameter settings for other datasets, please refer to the Technical appendix.

  • dSprite dataset for Kim's disentanglement score evaluation : Evauation file is currently not available. (will be update soon) The evaulation process and code is same as cdsprite experiment.

Reproducing Color-dSprite expreiemnt

  • Color-dSprite dataset : Color dSprite Dataset is currently not available.

But you can create Colored-dSprites dataset by changing RGB channel of the original dsprites dataset.

Each channel of RGB takes 8 discrete values as : [0.00, 36.42, 72.85, 109.28, 145.71, 182.14, 218.57, 255.00] )

Then move Color-dSprites datset (eg. cdsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz) npz file to the folder (./data/dsprites-dataset/)

Run the code with following argument:

python -W ignore main.py --seed 7 --z_dim 16 --r_dim 10 --batch_size 64 --optim rmsprop --dataset cdsprites --viz True --viz_port 8097 --z_bias 0 --viz_name dsprites --beta 0.071 --alpha 1 --gamma 1 --G_lr 5e-5 --D_lr 1e-6 --max_iter 500000 --logiter 500 --ptriter 2500 --ckptiter 2500 --load_ckpt -1 --init_type normal --save_img True
  • Color-dSprite dataset for Kim's disentanglement score evaluation : "./data/img4eval_cdsprites.7z".

You first need to unzip "imgs4eval_cdsprites.7z" file using 7za. Please locate all the unzip files in "/data/imgs4eval_cdsprites/*" folder.

run the evaluation on Kim's disentanglment metric, type

python evaluator.py --dset_dir data/imgs4eval_cdsprites --logiter 5000 --lastiter 500000 --name main

After all the evaluations for each checkpoint is done, you can see the overall disentanglement scores with the "checkout_scores.ipynb" (jupyter notebook) file. or you can just type

import os
import torch
torch.load('checkpoint/main/result.metric')

to see the scores in the python console. Then move Color-dSprites datset (eg. cdsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz) to ./data/dsprites-dataset/

Reproducing CelebA experiment

  • CelebA dataset : please download CelebA dataset and prepare 64x64 center cropped image files into the folder (./data/CelebA/cropped_64)

Then run the code with following argument:

python -W ignore main2.py --seed 0 --z_dim 64 --r_dim 15 --batch_size 64 --optim rmsprop --dataset celeba --viz_port 8097 --z_bias 0 --r_weight 0 --viz_name celeba --beta 0.35 --alpha 1 --gamma 1 --max_iter 1000000 --G_lr 5e-5 --D_lr 2e-6 --R_lr 5e-5 --ckpt_dir checkpoint --output_dir output --logiter 500 --ptriter 20000 --ckptiter 20000 --ngf 64 --ndf 64 --label_smoothing True --instance_noise_start 0.5 --instance_noise_end 0.01 --init_type orthogonal

Reproducing 3dChairs experiment

  • 3dChairs dataset : please download 3dChairs dataset and move image files into the folder (./data/3DChairs/images)
python -W ignore main2.py --seed 0 --z_dim 64 --r_dim 10 --batch_size 64 --optim rmsprop --dataset 3dchairs --viz_port 8097 --z_bias 0 --r_weight 0 --viz_name 3dchairs --beta 0.325 --alpha 1 --gamma 1 --max_iter 700000 --G_lr 5e-5 --D_lr 2e-6 --R_lr 5e-5 --ckpt_dir checkpoint --output_dir output --logiter 500 --ptriter 20000 --ckptiter 20000 --ngf 32 --ndf 32 --label_smoothing True --instance_noise_start 0.5 --instance_noise_end 0.01 --init_type orthogonal

Citing IB-GAN

If you like this work and end up using IB-GAN for your reseach, please cite our paper with the bibtex code:

@inproceedings{jeon2021ib, title={IB-GAN: Disengangled Representation Learning with Information Bottleneck Generative Adversarial Networks}, author={Jeon, Insu and Lee, Wonkwang and Pyeon, Myeongjang and Kim, Gunhee}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={35}, number={9}, pages={7926--7934}, year={2021} }

The disclosure and use of the currently published code is limited to research purposes only.

Owner
Insu Jeon
Stay hungry, stay foolish.
Insu Jeon
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022