An Approach to Explore Logistic Regression Models

Related tags

Deep Learningucreg
Overview

User-centered Regression

An Approach to Explore Logistic Regression Models

This tool applies the potential of Attribute-RadViz in identifying correlations levels of attributes to explore LR models. We focus on reducing the limitations of using those models in multidimensional data contexts.

The tool includes the following aspects:

  • feature selection,
  • regression model construction,
  • evaluation of binary and multinomial regression, and
  • construction of a panorama for queries over the model.

Authors:

  • Erasmo Artur (USP)
  • Rosane Minghim (UCC)

Installing and running

  • Download this project and unzip in a local directory
  • Open the HTML file in a browser (tested in Chrome, Firefox, and Edge)

Getting started

  • Rendering the first view:
    • Go to Left panel->CSV File->Choose file to pick a CSV file.
    • Then choose a target attribute from Left panel->Target Attribute.
  • Generation of logistic regression models:
    • Select attributes clicking over them and click over the dimensional anchor of the desired label.

The interface

Screen of the interface

  • (a) File opener
  • (b) Target attribute selection
  • (c) Adjust the size of the elements
  • (d) Adjust the opacity of the elements
  • (e) Adjust the strength of RadViz links
  • (f) Adjust the repelling force of the elements (to avoid overlapping)
  • (g) Enable/disable visual widgets of the tool (can increase performance)
    • Information bars: Hide/Show all informations bars
    • Borders of nodes: Hide/Show the borders of the mapped elements
    • Links lines: Hide/Show between DAs and mapped elements
    • Word cloud: Hide/Show a word cloud when hovering DAs
    • Correlation between attributes: Dynamically changes sizes of elements according to the correlation to the hovered one.
  • (h) Choose the evaluation mode in the second view
  • (i) Plot some attribute of the data set directly to the ROC
  • (j) Choose the discretization of the ROC curve
  • (k) Choose the confindence of the LR model
  • (l) Choose the attribute used in to identify mapped items by the tooltip
  • (m) Define the sample size for the view
  • (n) Define the opacity of the elements
  • (o) Adjust the repelling force of the elements (to avoid overlapping)
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
PyTorch implementation for paper StARformer: Transformer with State-Action-Reward Representations.

StARformer This repository contains the PyTorch implementation for our paper titled StARformer: Transformer with State-Action-Reward Representations.

Jinghuan Shang 14 Dec 09, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022