Opinionated code formatter, just like Python's black code formatter but for Beancount

Overview

beancount-black CircleCI

Opinionated code formatter, just like Python's black code formatter but for Beancount

Try it out online here

Features

  • MIT licensed - based on beancount-parser, a Lark based LALR(1) Beancount syntax parser
  • Extremely fast - 5K+ lines file generated by bean-example can be formatted in around 1 second
  • Section awareness - entries separated by Emac org symbol mark * will be formatted in groups without changing the overall structure
  • Comment preserving - comments are preserved and will be formatted as well
  • Auto column width - calculate maximum column width and adjust accordingly
  • Valid beancount file assumed - please notice that the formatter assumes the given beacnount file is valid, it doesn't not perform any kind of validation

Sponsor

The original project beancount-black was meant to be an internal tool built by Launch Platform LLC for

BeanHub logo

A modern accounting book service based on the most popular open source version control system Git and text-based double entry accounting book software Beancount. We realized adding new entries with BeanHub automatically over time makes beancount file a mess. So obviously, a strong code formatter is needed. While SaaS businesses won't be required to open source an internal tool like this, we still love that the service is only possible because of the open-source tool we are using. We think it would be greatly beneficial for the community to access a tool like this, so we've decided to open source it under MIT license, hope you find this tool useful 😄

Install

To install the formatter, simply run

pip install beancount-black

Usage

Run

bean-black /path/to/file.bean

Then the file will be formatted. Since this tool is still in its early stage, a backup file at <filepath>.backup will be created automatically by default just in case. The creation of backup files can be disabled by passing -n or --no-backup like this

bean-black -n /path/to/file.bean

It's highly recommended to use BeanHub, Git or other version control system to track your Beancount book files before running the formatter against them without a backup.

If you want to run the formatter programmatically, you can do this

import io

from beancount_parser.parser import make_parser
from beancount_black.formatter import Formatter

parser = make_parser()
formatter = Formatter()

tree = parser.parse(beancount_content)
output_file = io.StringIO()
formatter.format(tree, output_file)

Future features

  • Add argument for renaming account and commodity
  • Add argument for following other files from include statements and also format those files

Feedbacks, bugs reporting or feature requests are welcome 🙌 , just please open an issue. No guarantee we have time to deal with them, but will see what we can do.

Owner
Launch Platform
We build & launch innovative software products
Launch Platform
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022