Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Overview

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Authors:

*: Equal Contribution

Introduction

This repo contains implementation of the group VSA and binary HDC model with random Fourier feature (RFF) encoding, described in the paper Understanding Hyperdimensional Computing for Parallel Single-Pass Learning.

Our RFF method and group VSA can outperform the state-of-the-art HDC model while maintaining hardware efficiency. For example, on MNIST,

Model 1-Epoch Accuracy 10-Epoch Accuracy Circuit-Depth Complexity
Percep. 94.3 % 94.3 % 1299
SOTA HDC NA 89.0 % 295
RFF HDC 95.4 % 95.4 % 295
RFF G(2^3)-VSA 96.3 % 95.7 % 405

Dependencies and Data

Numpy and PyTorch>=1.0.0 are required to run the implementation. Supported datasets include MNIST, Fashion-MNIST, CIFAR-10, ISOLET and UCI-HAR. We provide the ISOLET and UCI-HAR data in dataset folder.

Usage

Please create the ./encoded_data folder before running the following code.

$ python main.py [-h] [-lr LR] [-gamma GAMMA] [-epoch EPOCH] [-gorder GORDER] [-dim DIM] 
[-data_dir DATA_DIR] [-model MODEL]
optional arguments:
  -h, --help            show this help message and exit
  -lr LR                learning rate for optimizing class representative
  -gamma GAMMA          kernel parameter for computing covariance
  -epoch EPOCH          epochs of training
  -gorder GORDER        order of the cyclic group required for G-VSA
  -dim DIM              dimension of hypervectors
  -resume               resume from existing encoded hypervectors
  -data_dir DATA_DIR    Directory used to save encoded data (hypervectors)
  -dataset {mnist,fmnist,cifar,isolet,ucihar}
                        dataset (mnist | fmnist | cifar | isolet | ucihar)
  -raw_data_dir RAW_DATA_DIR
                        Raw data directory to the dataset
  -model {rff-hdc,linear-hdc,rff-gvsa}
                        feature and model to use: (rff-hdc | linear-hdc | rff-gvsa)

For example,

$ python main.py -gamma 0.3 -epoch 10 -gorder 8 -dim 10000 -dataset mnist -model rff-gvsa

Citation

If you find this repo useful, please cite:


Owner
Cornell RelaxML
Chris De Sa's Research Group
Cornell RelaxML
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)

ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=

Agustinus Kristiadi 4 Dec 26, 2021
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 09, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th

workingcoder 115 Jan 05, 2023