An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Overview

Deep Permutation Equivariant Structure from Motion

Paper | Poster

This repository contains an implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

The paper proposes a neural network architecture that, given a set of point tracks in multiple images of a static scene, recovers both the camera parameters and a (sparse) scene structure by minimizing an unsupervised reprojection loss. The method does not require initialization of camera parameters or 3D point locations and is implemented for two setups: (1) single scene reconstruction and (2) learning from multiple scenes.

Table of Contents


Setup

This repository is implemented with python 3.8, and in order to run bundle adjustment requires linux.

Folders

The repository should contain the following folders:

Equivariant-SFM
├── bundle_adjustment
├── code
├── datasets
│   ├── Euclidean
│   └── Projective
├── environment.yml
├── results

Conda envorinment

Create the environment using one of the following commands:

conda create -n ESFM -c pytorch -c conda-forge -c comet_ml -c plotly  -c fvcore -c iopath -c bottler -c anaconda -c pytorch3d python=3.8 pytorch cudatoolkit=10.2 torchvision pyhocon comet_ml plotly pandas opencv openpyxl xlrd cvxpy fvcore iopath nvidiacub pytorch3d eigen cmake glog gflags suitesparse gxx_linux-64 gcc_linux-64 dask matplotlib
conda activate ESFM

Or:

conda env create -f environment.yml
conda activate ESFM

And follow the bundle adjustment instructions.

Data

Download the data from this link.

The model can work on both calibrated camera setting (euclidean reconstruction) and on uncalibrated cameras (projective reconstruction).

The input for the model is an observed points matrix of size [m,n,2] where the entry [i,j] is a 2D image point that corresponds to camera (image) number i and 3D point (point track) number j.

In practice we use a correspondence matrix representation of size [2*m,n], where the entries [2*i,j] and [2*i+1,j] form the [i,j] image point.

For the calibrated setting, the input must include m calibration matrices of size [3,3].

How to use

Optimization

For a calibrated scene optimization run:

python single_scene_optimization.py --conf Optimization_Euc.conf

For an uncalibrated scene optimization run:

python single_scene_optimization.py --conf Optimization_Proj.conf

The following examples are for the calibrated settings but are clearly the same for the uncalibrated setting.

You can choose which scene to optimize either by changing the config file in the field 'dataset.scan' or from the command line:

python single_scene_optimization.py --conf Optimization_Euc.conf --scan [scan_name]

Similarly, you can override any value of the config file from the command line. For example, to change the number of training epochs and the evaluation frequency use:

python single_scene_optimization.py --conf Optimization_Euc.conf --external_params "train:num_of_epochs:1e+5,train:eval_intervals:100"

Learning

To run the learning setup run:

python multiple_scenes_learning.py --conf Learning_Euc.conf

Or for the uncalibrated setting:

python multiple_scenes_learning.py --conf Learning_Proj.conf

To override some parameters from the config file, you can either change the file itself or use the same command as in the optimization setting:

python multiple_scenes_learning.py --conf Learning_Euc.conf --external_params "train:num_of_epochs:1e+5,train:eval_intervals:100"

Citation

If you find this work useful please cite:

@InProceedings{Moran_2021_ICCV,
    author    = {Moran, Dror and Koslowsky, Hodaya and Kasten, Yoni and Maron, Haggai and Galun, Meirav and Basri, Ronen},
    title     = {Deep Permutation Equivariant Structure From Motion},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {5976-5986}
}
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022