Pyeventbus: a publish/subscribe event bus

Overview

pyeventbus

https://travis-ci.org/n89nanda/pyeventbus.svg?branch=master

pyeventbus is a publish/subscribe event bus for Python 2.7.

  • simplifies the communication between python classes
  • decouples event senders and receivers
  • performs well threads, greenlets, queues and concurrent processes
  • avoids complex and error-prone dependencies and life cycle issues
  • makes code simpler
  • has advanced features like delivery threads, workers and spawning different processes, etc.
  • is tiny (3KB archive)

pyeventbus in 3 steps:

  1. Define events:

    class MessageEvent:
        # Additional fields and methods if needed
        def __init__(self):
            pass
    
  2. Prepare subscribers: Declare and annotate your subscribing method, optionally specify a thread mode:

    from pyeventbus import *
    
    @subscribe(onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    

    Register your subscriber. For example, if you want to register a class in Python:

    from pyeventbus import *
    
    class MyClass:
        def __init__(self):
            pass
    
        def register(self, myclass):
            PyBus.Instance().register(myclass, self.__class__.__name__)
    
    # then during initilization
    
    myclass = MyClass()
    myclass.register(myclass)
    
  3. Post events:

    from pyeventbus import *
    
    class MyClass:
        def __init__(self):
            pass
    
        def register(self, myclass):
            PyBus.Instance().register(myclass, self.__class__.__name__)
    
        def postingAnEvent(self):
            PyBus.Instance().post(MessageEvent())
    
     myclass = MyClass()
     myclass.register(myclass)
     myclass.postingAnEvent()
    

Modes: pyeventbus can run the subscribing methods in 5 different modes

  1. POSTING:

    Runs the method in the same thread as posted. For example, if an event is posted from main thread, the subscribing method also runs in the main thread. If an event is posted in a seperate thread, the subscribing method runs in the same seperate method
    
    This is the default mode, if no mode has been provided::
    
    @subscribe(threadMode = Mode.POSTING, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  2. PARALLEL:

    Runs the method in a seperate python thread::
    
    @subscribe(threadMode = Mode.PARALLEL, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  3. GREENLET:

    Runs the method in a greenlet using gevent library::
    
    @subscribe(threadMode = Mode.GREENLET, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  4. BACKGROUND:

    Adds the subscribing methods to a queue which is executed by workers::
    
    @subscribe(threadMode = Mode.BACKGROUND, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  1. CONCURRENT:

    Runs the method in a seperate python process::
    
    @subscribe(threadMode = Mode.CONCURRENT, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    

Adding pyeventbus to your project:

pip install pyeventbus

Example:

git clone https://github.com/n89nanda/pyeventbus.git

cd pyeventbus

virtualenv venv

source venv/bin/activate

pip install pyeventbus

python example.py

Benchmarks and Performance:

Refer /pyeventbus/tests/benchmarks.txt for performance benchmarks on CPU, I/O and networks heavy tasks.

Run /pyeventbus/tests/test.sh to generate the same benchmarks.

Performance comparison between all the modes with Python and Cython

alternate text

Inspiration

Inspired by Eventbus from greenrobot: https://github.com/greenrobot/EventBus
You might also like...
Code for the paper
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

CVPRW 2021: How to calibrate your event camera
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Comments
  • Same method name for multiple subscribers bug

    Same method name for multiple subscribers bug

    Please see the code below. To summarize:

    • Define one event
    • Define two subscriber listening for the event above. Each subscriber has a listener method with the name on_event
    • Each of the subscriber classes above defines an instance field, but with unique name (self.something in the first class, self.something2 in the second class)
    • Define another class that posts an event

    Run this scenario and get the error below:

    Exception in thread thread-on_event:
    Traceback (most recent call last):
      File "C:\Anaconda2\envs\python\lib\threading.py", line 801, in __bootstrap_inner
        self.run()
      File "C:\Anaconda2\envs\python\lib\site-packages\pyeventbus\pyeventbus.py", line 112, in run
        self.method(self.subscriber, self.event)
      File "C:/FractureID/projects/python/ui/spectraqc/PyEventBusBug.py", line 16, in on_event
        print (self.something)
    AttributeError: Subscriber2 instance has no attribute 'something'
    
    Exception in thread thread-on_event:
    Traceback (most recent call last):
      File "C:\Anaconda2\envs\python\lib\threading.py", line 801, in __bootstrap_inner
        self.run()
      File "C:\Anaconda2\envs\python\lib\site-packages\pyeventbus\pyeventbus.py", line 112, in run
        self.method(self.subscriber, self.event)
      File "C:/FractureID/projects/python/ui/spectraqc/PyEventBusBug.py", line 26, in on_event
        print (self.something_else)
    AttributeError: Subscriber1 instance has no attribute 'something_else'
    
    

    It complains about the variable in class two not having the attribute in the first class and the other way around.

    If I change on of the on_event to something else like on_event2 then the issue is gone.

    from pyeventbus import *
    
    
    class SomeEvent:
        def __init__(self):
            pass
    
    
    class Subscriber1:
        def __init__(self):
            self.something = 'First subscriber'
            PyBus.Instance().register(self, self.__class__.__name__)
    
        @subscribe(threadMode=Mode.PARALLEL, onEvent=SomeEvent)
        def on_event(self, event):
            print (self.something)
    
    
    class Subscriber2:
        def __init__(self):
            self.something_else = 'Second subscriber'
            PyBus.Instance().register(self, self.__class__.__name__)
    
        @subscribe(threadMode=Mode.PARALLEL, onEvent=SomeEvent)
        def on_event(self, event):
            print (self.something_else)
    
    
    class PyEventBusBug:
    
        def __init__(self):
            Subscriber1()
            Subscriber2()
            PyBus.Instance().post(SomeEvent())
    
    
    if __name__ == "__main__":
        PyEventBusBug()
    
    
    bug 
    opened by ddanny 0
  • Doesn't even start on Windows because 2000 threads is apparently too much

    Doesn't even start on Windows because 2000 threads is apparently too much

      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 116, in subscribe
        bus = PyBus.Instance()
      File "C:\Python27\lib\site-packages\pyeventbus\Singleton.py", line 30, in Instance
        self._instance = self._decorated()
      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 24, in __init__
        for worker in [lambda: self.startWorkers() for i in range(self.num_threads)]: worker()
      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 24, in <lambda>
        for worker in [lambda: self.startWorkers() for i in range(self.num_threads)]: worker()
      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 30, in startWorkers
        worker.start()
      File "C:\Python27\lib\threading.py", line 736, in start
        _start_new_thread(self.__bootstrap, ())
    thread.error: can't start new thread
    

    See also: https://stackoverflow.com/a/1835043/2583080

    bug 
    opened by PawelTroka 4
Releases(0.2)
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021