An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Overview

Text2Event

Update

  • [2021-08-03] Update pre-trained models

Quick links

Requirements

General

  • Python (verified on 3.8)
  • CUDA (verified on 11.1)

Python Packages

  • see requirements.txt
conda create -n text2event python=3.8
conda activate text2event
pip install -r requirements.txt

Quick Start

Data Format

Data folder contains four files:

data/text2tree/one_ie_ace2005_subtype
├── event.schema
├── test.json
├── train.json
└── val.json

train/val/test.json are data files, and each line is a JSON instance. Each JSON instance contains text and event fields, in which text is plain text, and event is event linearized form. If you want to use other key names, it is easy to change the input format in run_seq2seq.py.

{"text": "He also owns a television and a radio station and a newspaper .", "event": "<extra_id_0>  <extra_id_1>"}
{"text": "' ' For us the United Natgions is the key authority '' in resolving the Iraq crisis , Fischer told reporters opn arrival at the EU meeting .", "event": "<extra_id_0> <extra_id_0> Meet meeting <extra_id_0> Entity EU <extra_id_1> <extra_id_1> <extra_id_1>"}

Note:

  • Use the extra character of T5 as the structure indicators, such as <extra_id_0>, <extra_id_1>, etc.

  • event.schema is the event schema file for building the trie of constrained decoding. It contains three lines: the first line is event type name list, the second line is event role name list, the third line is type-to-role dictionary.

    ["Declare-Bankruptcy", "Convict", ...]
    ["Plaintiff", "Target", ...]
    {"End-Position": ["Place", "Person", "Entity"], ...}
    

Model Training

Training scripts as follows:

  • run_seq2seq.py: Python code entry, modified from the transformers/examples/seq2seq/run_seq2seq.py
  • run_seq2seq.bash: Model training script logging to the log file.
  • run_seq2seq_verbose.bash: Same model training script as run_seq2seq.bash but output to the screen directly.
  • run_seq2seq_with_pretrain.bash: Model training script for curriculum learning, which contains substructure learning and full structure learning.

The command for the training is as follows (see bash scripts and Python files for the corresponding command-line arguments):

bash run_seq2seq_verbose.bash -d 0 -f tree -m t5-base --label_smoothing 0 -l 1e-4 --lr_scheduler linear --warmup_steps 2000 -b 16
  • -d refers to the GPU device id.
  • -m t5-base refers to using T5-base.
  • Currently, constrained decoding algorithms do not support use_fast_tokenizer=True and beam search yet.

Trained models are saved in the models/ folder.

Model Evaluation

Offset-level Evaluation

python evaluation.py -g <data-folder-path> -r <offset-folder-path> -p <model-folder-path> -f <data-format>
  • This evaluation script converts the eval_preds_seq2seq.txt and test_preds_seq2seq.txt in the model folder <model-folder-path> into the corresponding offset prediction results for model evaluation.
  • -f <data-format> refers to dyiepp or oneie

Record-level Evaluation (approximate, used in training)

bash run_eval.bash -d 0 -m <model-folder-path> -i <data-folder-path> -c -b 8
  • -d refers to the GPU device id.
  • -c represents the use of constrained decoding, otherwise not apply
  • -b 8 represents batch_size=8

How to expand to other tasks

  1. prepare the corresponding data format
  2. Writ the code for reading corresponding data format: elif data_args.task.startswith("event") in seq2seq.py
  3. Writ the code for evaluating the corresponding task result: def compute_metrics(eval_preds) in seq2seq.py

Completing the above process can finish the simple Seq2Seq training and inference process.

If you need to use constrained decoding, you need to write the corresponding decoding mode (decoding_format), refer to extraction.extract_constraint.get_constraint_decoder

Pre-trained Model

You can find the pre-trained models as following google drive links or download models using command gdown (pip install gdown).

dyiepp_ace2005_en_t5_base.zip

gdown --id 1_fOmnSatNfceL9DZPxpof5AT9Oo7vTrC && unzip dyiepp_ace2005_en_t5_base.zip

dyiepp_ace2005_en_t5_large.zip

gdown --id 10iY1obkbgJtTKwfoOFevqL5AwG-hLvhU && unzip dyiepp_ace2005_en_t5_large.zip

oneie_ace2005_en_t5_large.zip

gdown --id 1zwnptRbdZntPT4ucqSANeaJ3vvwKliUe && unzip oneie_ace2005_en_t5_large.zip

oneie_ere_en_t5_large.zip

gdown --id 1WG7-pTZ3K49VMbQIONaDq_0pUXAcoXrZ && unzip oneie_ere_en_t5_large.zip

Event Datasets Preprocessing

We first refer to the following code and environments [dygiepp] and [oneie v0.4.7] for data preprocessing. Thanks to them!

After data preprocessing and we get the following data files:

 $ tree data/raw_data/
data/raw_data/
├── ace05-EN
│   ├── dev.oneie.json
│   ├── test.oneie.json
│   └── train.oneie.json
├── dyiepp_ace2005
│   ├── dev.json
│   ├── test.json
│   └── train.json
└── ERE-EN
    ├── dev.oneie.json
    ├── test.oneie.json
    └── train.oneie.json

We then convert the above data files to tree format. The following scripts generate the corresponding data folder in data/text2tree. The conversion will automatically generate train/dev/test JSON files and event.schema file.

bash scripts/processing_data.bash
data/text2tree
├── dyiepp_ace2005_subtype
│   ├── event.schema
│   ├── test.json
│   ├── train.json
│   └── val.json
├── dyiepp_ace2005_subtype_span
│   ├── event.schema
│   ├── test.json
│   ├── train.json
│   └── val.json
├── one_ie_ace2005_subtype
│   ├── event.schema
│   ├── test.json
│   ├── train.json
│   └── val.json
├── one_ie_ace2005_subtype_span
│   ├── event.schema
│   ├── test.json
│   ├── train.json
│   └── val.json
├── one_ie_ere_en_subtype
│   ├── event.schema
│   ├── test.json
│   ├── train.json
│   └── val.json
└── one_ie_ere_en_subtype_span
    ├── event.schema
    ├── test.json
    ├── train.json
    └── val.json
  • dyiepp_ace2005_subtype for Full Structure Learning and dyiepp_ace2005_subtype_span for Substructure Learning.

Citation

If this repository helps you, please cite this paper:

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong Tang, Annan Li, Le Sun, Meng Liao, Shaoyi Chen. Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction. The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021).

@inproceedings{lu-etal-2021-text2event,
    title = "{T}ext2{E}vent: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction",
    author = "Lu, Yaojie  and
      Lin, Hongyu  and
      Xu, Jin  and
      Han, Xianpei  and
      Tang, Jialong  and
      Li, Annan  and
      Sun, Le  and
      Liao, Meng  and
      Chen, Shaoyi",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.217",
    pages = "2795--2806",
    abstract = "Event extraction is challenging due to the complex structure of event records and the semantic gap between text and event. Traditional methods usually extract event records by decomposing the complex structure prediction task into multiple subtasks. In this paper, we propose Text2Event, a sequence-to-structure generation paradigm that can directly extract events from the text in an end-to-end manner. Specifically, we design a sequence-to-structure network for unified event extraction, a constrained decoding algorithm for event knowledge injection during inference, and a curriculum learning algorithm for efficient model learning. Experimental results show that, by uniformly modeling all tasks in a single model and universally predicting different labels, our method can achieve competitive performance using only record-level annotations in both supervised learning and transfer learning settings.",
}
Owner
Roger
Roger
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023