(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Overview

Energy-based Latent Aligner for Incremental Learning

Accepted to CVPR 2022

paper

We illustrate an Incremental Learning model trained on a continuum of tasks in the top part of the figure. While learning the current task , the latent representation of Task data gets disturbed, as shown by red arrows. ELI learns an energy manifold, and uses it to counteract this inherent representational shift, as illustrated by green arrows, thereby alleviating forgetting.

Overview

In this work, we propose ELI: Energy-based Latent Aligner for Incremental Learning, which:

  • Learns an energy manifold for the latent representations such that previous task latents will have low energy and the current task latents have high energy values.
  • This learned manifold is used to counter the representational shift that happens during incremental learning.

The implicit regularization that is offered by our proposed methodology can be used as a plug-and-play module in existing incremental learning methodologies for classification and object-detection.

Toy Experiment

A key hypothesis that we base our methodology is that while learning a new task, the latent representations will get disturbed, which will in-turn cause catastrophic forgetting of the previous task, and that an energy manifold can be used to align these latents, such that it alleviates forgetting.

Here, we illustrate a proof-of-concept that our hypothesis is indeed true. We consider a two task experiment on MNIST, where each task contains a subset of classes: = {0, 1, 2, 3, 4}, = {5, 6, 7, 8, 9}.

After learning the second task, the accuracy on test set drops to 20.88%, while experimenting with a 32 dimensional latent space. The latent aligner in ELI provides 62.56% improvement in test accuracy to 83.44%. The visualization of a 512 dimensional latent space after learning in sub-figure (c), indeed shows cluttering due to representational shift. ELI is able to align the latents as shown in sub-figure (d), which alleviates the drop in accuracy from 89.14% to 99.04%.

The code for these toy experiments are in:

Implicitly Recognizing and Aligning Important Latents

latents.mp4

Each row shows how latent dimension is updated by ELI. We see that different dimensions have different degrees of change, which is implicitly decided by our energy-based model.

Classification and Detection Experiments

Code and models for the classification and object detection experiments are inside the respective folders:

Each of these are independent repositories. Please consider them separate.

Citation

If you find our research useful, please consider citing us:

@inproceedings{joseph2022Energy,
  title={Energy-based Latent Aligner for Incremental Learning},
  author={Joseph, KJ and Khan, Salman and Khan, Fahad Shahbaz and Anwar, Rao Muhammad and Balasubramanian, Vineeth},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Our Related Work

  • Open-world Detection Transformer, CVPR 2022. Paper | Code
  • Towards Open World Object Detection, CVPR 2021. (Oral) Paper | Code
  • Incremental Object Detection via Meta-learning, TPAMI 2021. Paper | Code
Owner
Joseph K J
CS PhD Student at IIT-H
Joseph K J
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022