Ensembling Off-the-shelf Models for GAN Training

Overview

Data-Efficient GANs with DiffAugment

project | paper | datasets | video | slides

Generated using only 100 images of Obama, grumpy cats, pandas, the Bridge of Sighs, the Medici Fountain, the Temple of Heaven, without pre-training.

[NEW!] PyTorch training with DiffAugment-stylegan2-pytorch is now available!

[NEW!] Our Colab tutorial is released!

[NEW!] FFHQ training is supported! See the DiffAugment-stylegan2 README.

[NEW!] Time to generate 100-shot interpolation videos with generate_gif.py!

[NEW!] Our DiffAugment-biggan-imagenet repo (for TPU training) is released!

[NEW!] Our DiffAugment-biggan-cifar PyTorch repo is released!

This repository contains our implementation of Differentiable Augmentation (DiffAugment) in both PyTorch and TensorFlow. It can be used to significantly improve the data efficiency for GAN training. We have provided DiffAugment-stylegan2 (TensorFlow) and DiffAugment-stylegan2-pytorch, DiffAugment-biggan-cifar (PyTorch) for GPU training, and DiffAugment-biggan-imagenet (TensorFlow) for TPU training.

Low-shot generation without pre-training. With DiffAugment, our model can generate high-fidelity images using only 100 Obama portraits, grumpy cats, or pandas from our collected 100-shot datasets, 160 cats or 389 dogs from the AnimalFace dataset at 256×256 resolution.

Unconditional generation results on CIFAR-10. StyleGAN2’s performance drastically degrades given less training data. With DiffAugment, we are able to roughly match its FID and outperform its Inception Score (IS) using only 20% training data.

Differentiable Augmentation for Data-Efficient GAN Training
Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han
MIT, Tsinghua University, Adobe Research, CMU
arXiv

Overview

Overview of DiffAugment for updating D (left) and G (right). DiffAugment applies the augmentation T to both the real sample x and the generated output G(z). When we update G, gradients need to be back-propagated through T (iii), which requires T to be differentiable w.r.t. the input.

Training and Generation with 100 Images

To generate an interpolation video using our pre-trained models:

cd DiffAugment-stylegan2
python generate_gif.py -r mit-han-lab:DiffAugment-stylegan2-100-shot-obama.pkl -o obama.gif

or to train a new model:

python run_low_shot.py --dataset=100-shot-obama --num-gpus=4

You may also try out 100-shot-grumpy_cat, 100-shot-panda, 100-shot-bridge_of_sighs, 100-shot-medici_fountain, 100-shot-temple_of_heaven, 100-shot-wuzhen, or the folder containing your own training images. Please refer to the DiffAugment-stylegan2 README for the dependencies and details.

[NEW!] PyTorch training is now available:

cd DiffAugment-stylegan2-pytorch
python train.py --outdir=training-runs --data=https://data-efficient-gans.mit.edu/datasets/100-shot-obama.zip --gpus=1

DiffAugment for StyleGAN2

To run StyleGAN2 + DiffAugment for unconditional generation on the 100-shot datasets, CIFAR, FFHQ, or LSUN, please refer to the DiffAugment-stylegan2 README or DiffAugment-stylegan2-pytorch for the PyTorch version.

DiffAugment for BigGAN

Please refer to the DiffAugment-biggan-cifar README to run BigGAN + DiffAugment for conditional generation on CIFAR (using GPUs), and the DiffAugment-biggan-imagenet README to run on ImageNet (using TPUs).

Using DiffAugment for Your Own Training

To help you use DiffAugment in your own codebase, we provide portable DiffAugment operations of both TensorFlow and PyTorch versions in DiffAugment_tf.py and DiffAugment_pytorch.py. Generally, DiffAugment can be easily adopted in any model by substituting every D(x) with D(T(x)), where x can be real images or fake images, D is the discriminator, and T is the DiffAugment operation. For example,

from DiffAugment_pytorch import DiffAugment
# from DiffAugment_tf import DiffAugment
policy = 'color,translation,cutout' # If your dataset is as small as ours (e.g.,
# hundreds of images), we recommend using the strongest Color + Translation + Cutout.
# For large datasets, try using a subset of transformations in ['color', 'translation', 'cutout'].
# Welcome to discover more DiffAugment transformations!

...
# Training loop: update D
reals = sample_real_images() # a batch of real images
z = sample_latent_vectors()
fakes = Generator(z) # a batch of fake images
real_scores = Discriminator(DiffAugment(reals, policy=policy))
fake_scores = Discriminator(DiffAugment(fakes, policy=policy))
# Calculating D's loss based on real_scores and fake_scores...
...

...
# Training loop: update G
z = sample_latent_vectors()
fakes = Generator(z) # a batch of fake images
fake_scores = Discriminator(DiffAugment(fakes, policy=policy))
# Calculating G's loss based on fake_scores...
...

We have implemented Color, Translation, and Cutout DiffAugment as visualized below:

Citation

If you find this code helpful, please cite our paper:

@inproceedings{zhao2020diffaugment,
  title={Differentiable Augmentation for Data-Efficient GAN Training},
  author={Zhao, Shengyu and Liu, Zhijian and Lin, Ji and Zhu, Jun-Yan and Han, Song},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
  year={2020}
}

Acknowledgements

We thank NSF Career Award #1943349, MIT-IBM Watson AI Lab, Google, Adobe, and Sony for supporting this research. Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). We thank William S. Peebles and Yijun Li for helpful comments.

Owner
MIT HAN Lab
Accelerating Deep Learning Computing
MIT HAN Lab
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023