CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

Related tags

Deep LearningCLUES
Overview

License: MIT

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

This repo contains the data and source code for baseline models in the NeurIPS 2021 benchmark paper for Constrained Language Understanding Evaluation Standard (CLUES) under MIT License.

Overview

The benchmark data is located in the data directory. We also release source codes for two fine-tuning strategies on CLUES, one with classic fine-tuning and the other with prompt-based fine-tuning.

Classic finetuning

Setup Environment

  1. > git clone [email protected]:microsoft/CLUES.git
  2. > git clone [email protected]:namisan/mt-dnn.git
  3. > cp -rf CLUES/classic_finetuning/ mt-dnn/
  4. > cd mt-dnn/

Run Experiments

  1. Preprocess data
    > bash run_clues_data_process.sh

  2. Train/test Models
    > bash run_clues_batch.sh

Prompt fine-tuning

Setup

  1. cd prompt_finetuning
  2. Run sh setup.sh to automatically fetch dependency codebase and apply our patch for CLUES

Run Experiments

All prompt-based funetuning baselines run commands are in experiments.sh, simple run by sh experiments.sh

Leaderboard

Here we maintain a leaderboard, allowing researchers to submit their results as entries.

Submission Instructions

  • Each submission must be submitted as a pull request modifying the markdown file underlying the leaderboard.
  • The submission must attach an accompanying public paper and public source code for reproducing their results on our dataset.
  • A submission can be toward any subset of tasks in our benchmark, or toward the aggregate leaderboard.
  • For any task targeted by the submission, we require evaluation on (1) 10, 20, and 30 shots, and (2) all 5 splits of the corresponding dataset and a report of their mean and standard deviation.
  • Each leaderboard will be sorted by the 30-shot mean S1 score (where S1 score is a variant of F1 score defined in our paper).
  • The submission should not use data from the 4 other splits during few-shot finetuning of any 1 split, either as extra training set or as validation set for hyperparameter tuning.
  • However, we allow external data, labeled or unlabeled, to be used for such purposes. Each submission using external data must mark the corresponding columns "external labeled" and/or "external unlabeled". Note, in this context, "external data" refers to data used after pretraining (e.g., for task-specific tuning); in particular, methods using existing pretrained models only, without extra data, should not mark either column. For obvious reasons, models cannot be trained on the original labeled datasets from where we sampled the few-shot CLUES data.
  • In the table entry, the submission should include a method name and a citation, hyperlinking to their publicly released source code reproducing the results. See the last entry of the table below for an example.

Abbreviations

  • FT = (classic) finetuning
  • PT = prompt based tuning
  • ICL = in-context learning, in the style of GPT-3
  • μ±σ = mean μ and standard deviation σ across our 5 splits. Aggregate standard deviation is calculated using the sum-of-variance formula from individual tasks' standard deviations.

Benchmarking CLUES for Aggregate 30-shot Evaluation

Shots (K=30) external labeled external unlabeled Average ▼ SST-2 MNLI CoNLL03 WikiANN SQuAD-v2 ReCoRD
Human N N 81.4 83.7 69.4 87.4 82.6 73.5 91.9
T5-Large-770M-FT N N 43.1±6.7 52.3±2.9 36.8±3.8 51.2±0.1 62.4±0.6 43.7±2.7 12±3.8
BERT-Large-336M-FT N N 42.1±7.8 55.4±2.5 33.3±1.4 51.3±0 62.5±0.6 35.3±6.4 14.9±3.4
BERT-Base-110M-FT N N 41.5±9.2 53.6±5.5 35.4±3.2 51.3±0 62.8±0 32.6±5.8 13.1±3.3
DeBERTa-Large-400M-FT N N 40.1±17.8 47.7±9.0 26.7±11 48.2±2.9 58.3±6.2 38.7±7.4 21.1±3.6
RoBERTa-Large-355M-FT N N 40.0±10.6 53.2±5.6 34.0±1.1 44.7±2.6 48.4±6.7 43.5±4.4 16±2.8
RoBERTa-Large-355M-PT N N 90.2±1.8 61.6±3.5
DeBERTa-Large-400M-PT N N 88.4±3.3 62.9±3.1
BERT-Large-336M-PT N N 82.7±4.1 45.3±2.0
GPT3-175B-ICL N N 91.0±1.6 33.2±0.2
BERT-Base-110M-PT N N 79.4±5.6 42.5±3.2
LiST (Wang et al.) N Y 91.3 ±0.7 67.9±3.0
Example (lastname et al.) Y/N Y/N 0±0 0±0 0±0 0±0 0±0 0±0 0±0

Individual Task Performance over Multiple Shots

SST-2

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
GPT-3 (175B) ICL N N 85.9±3.7 92.0±0.7 91.0±1.6 -
RoBERTa-Large PT N N 88.8±3.9 89.0±1.1 90.2±1.8 93.8
DeBERTa-Large PT N N 83.4±5.3 87.8±3.5 88.4±3.3 91.9
Human N N 79.8 83 83.7 -
BERT-Large PT N N 63.2±11.3 78.2±9.9 82.7±4.1 91
BERT-Base PT N N 63.9±10.0 76.7±6.6 79.4±5.6 91.9
BERT-Large FT N N 46.3±5.5 55.5±3.4 55.4±2.5 99.1
BERT-Base FT N N 46.2±5.6 54.0±2.8 53.6±5.5 98.1
RoBERTa-Large FT N N 38.4±21.7 52.3±5.6 53.2±5.6 98.6
T5-Large FT N N 51.2±1.8 53.4±3.2 52.3±2.9 97.6
DeBERTa-Large FT N N 43.0±11.9 40.8±22.6 47.7±9.0 100
Example (lastname et al.) Y/N Y/N 0±0 0±0 0±0 -

MNLI

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N Y 78.1 78.6 69.4 -
LiST (wang et al.) N N 60.5±8.3 67.2±4.5 67.9±3.0 -
DeBERTa-Large PT N N 44.5±8.2 60.7±5.3 62.9±3.1 88.1
RoBERTa-Large PT N N 57.7±3.6 58.6±2.9 61.6±3.5 87.1
BERT-Large PT N N 41.7±1.0 43.7±2.1 45.3±2.0 81.9
BERT-Base PT N N 40.4±1.8 42.1±4.4 42.5±3.2 81
T5-Large FT N N 39.8±3.3 37.9±4.3 36.8±3.8 85.9
BERT-Base FT N N 37.0±5.2 35.2±2.7 35.4±3.2 81.6
RoBERTa-Large FT N N 34.3±2.8 33.4±0.9 34.0±1.1 85.5
BERT-Large FT N N 33.7±0.4 28.2±14.8 33.3±1.4 80.9
GPT-3 (175B) ICL N N 33.5±0.7 33.1±0.3 33.2±0.2 -
DeBERTa-Large FT N N 27.4±14.1 33.6±2.5 26.7±11.0 87.6

CoNLL03

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 87.7 89.7 87.4 -
BERT-Base FT N N 51.3±0 51.3±0 51.3±0 -
BERT-Large FT N N 51.3±0 51.3±0 51.3±0 89.3
T5-Large FT N N 46.3±6.9 50.0±0.7 51.2±0.1 92.2
DeBERTa-Large FT N N 50.1±1.2 47.8±2.5 48.2±2.9 93.6
RoBERTa-Large FT N N 50.8±0.5 44.6±5.1 44.7±2.6 93.2

WikiANN

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 81.4 83.5 82.6 -
BERT-Base FT N N 62.8±0 62.8±0 62.8±0 88.8
BERT-Large FT N N 62.8±0 62.6±0.4 62.5±0.6 91
T5-Large FT N N 61.7±0.7 62.1±0.2 62.4±0.6 87.4
DeBERTa-Large FT N N 58.5±3.3 57.9±5.8 58.3±6.2 91.1
RoBERTa-Large FT N N 58.5±8.8 56.9±3.4 48.4±6.7 91.2

SQuAD v2

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 71.9 76.4 73.5 -
T5-Large FT N N 43.6±3.5 28.7±13.0 43.7±2.7 87.2
RoBERTa-Large FT N N 38.1±7.2 40.1±6.4 43.5±4.4 89.4
DeBERTa-Large FT N N 41.4±7.3 44.4±4.5 38.7±7.4 90
BERT-Large FT N N 42.3±5.6 35.8±9.7 35.3±6.4 81.8
BERT-Base FT N N 46.0±2.4 34.9±9.0 32.6±5.8 76.3

ReCoRD

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 94.1 94.2 91.9 -
DeBERTa-Large FT N N 15.7±5.0 16.8±5.7 21.1±3.6 80.7
RoBERTa-Large FT N N 12.0±1.9 9.9±6.2 16.0±2.8 80.3
BERT-Large FT N N 9.9±5.2 11.8±4.9 14.9±3.4 66
BERT-Base FT N N 10.3±1.8 11.7±2.4 13.1±3.3 54.4
T5-Large FT N N 11.9±2.7 11.7±1.5 12.0±3.8 77.3

How do I cite CLUES?

@article{cluesteam2021,
  title={Few-Shot Learning Evaluation in Natural Language Understanding},
  author={Mukherjee, Subhabrata and Liu, Xiaodong and Zheng, Guoqing and Hosseini, Saghar and Cheng, Hao and Yang, Greg and Meek, Christopher and Awadallah, Ahmed Hassan and Gao, Jianfeng},
  year={2021}
}

Acknowledgments

MT-DNN: https://github.com/namisan/mt-dnn
LM-BFF: https://github.com/princeton-nlp/LM-BFF

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

224 Jan 04, 2023
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
A Gura parser implementation for Python

Gura Python parser This repository contains the implementation of a Gura (compliant with version 1.0.0) format parser in Python. Installation pip inst

Gura Config Lang 19 Jan 25, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022