A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

Overview

EfficientNet

A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.

[arxiv] [Official TF Repo]


Implement based on Official TF Repo. Only opened EfficientNet is included.
This repo not contains baseline network search(Mnas-Net) and compound coefficient search methods.

Some details(HyperParams, transform, EMA ...) are different with Original repo.

Pretrained network

This is not end-to-end imagenet trainning weight. Using the Official TF Pretrained weight.

Please check the conversion/readme.md and pretrained_example.ipynb

How to use:

python3 main.py -h
usage: main.py [-h] --save_dir SAVE_DIR [--root ROOT] [--gpus GPUS]
               [--num_workers NUM_WORKERS] [--model {b0}] [--epoch EPOCH]
               [--batch_size BATCH_SIZE] [--test]
               [--dropout_rate DROPOUT_RATE]
               [--dropconnect_rate DROPCONNECT_RATE] [--optim {adam,rmsprop}]
               [--lr LR] [--beta [BETA [BETA ...]]] [--momentum MOMENTUM]
               [--eps EPS] [--decay DECAY]

Pytorch EfficientNet

optional arguments:
  -h, --help            show this help message and exit
  --save_dir SAVE_DIR   Directory name to save the model
  --root ROOT           The Directory of data path.
  --gpus GPUS           Select GPU Numbers | 0,1,2,3 |
  --num_workers NUM_WORKERS
                        Select CPU Number workers
  --model {b0}          The type of Efficient net.
  --epoch EPOCH         The number of epochs
  --batch_size BATCH_SIZE
                        The size of batch
  --test                Only Test
  --dropout_rate DROPOUT_RATE
  --dropconnect_rate DROPCONNECT_RATE
  --optim {adam,rmsprop}
  --lr LR               Base learning rate when train batch size is 256.
  --beta [BETA [BETA ...]]
  --momentum MOMENTUM
  --eps EPS
  --decay DECAY

TODO

  • Hyper Parameter / Imagenet Transformation Check
  • Implementation of Resolution Change
  • Validation on Imagenet Dataset
  • Clean up logging

Owner
AhnDW
mmmmm
AhnDW
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
FinEAS: Financial Embedding Analysis of Sentiment 📈

FinEAS: Financial Embedding Analysis of Sentiment 📈 (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
190 Jan 03, 2023
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022