TriMap: Large-scale Dimensionality Reduction Using Triplets

Related tags

Deep Learningtrimap
Overview

TriMap

TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet constraints are of the form "point i is closer to point j than point k". The triplets are sampled from the high-dimensional representation of the points and a weighting scheme is used to reflect the importance of each triplet.

TriMap provides a significantly better global view of the data than the other dimensionality reduction methods such t-SNE, LargeVis, and UMAP. The global structure includes relative distances of the clusters, multiple scales in the data, and the existence of possible outliers. We define a global score to quantify the quality of an embedding in reflecting the global structure of the data.

CIFAR-10 dataset (test set) passed through a CNN (n = 10,000, d = 1024): Notice the semantic structure unveiled by TriMap.

Visualizations of the CIFAR-10 dataset

The following implementation is in Python. Further details and more experimental results are available in the paper.

How to use TriMap

TriMap has a transformer API similar to other sklearn libraries. To use TriMap with the default parameters, simply do:

import trimap
from sklearn.datasets import load_digits

digits = load_digits()

embedding = trimap.TRIMAP().fit_transform(digits.data)

To find the embedding using a precomputed pairwise distance matrix D, pass D as input and set use_dist_matrix to True:

embedding = trimap.TRIMAP(use_dist_matrix=True).fit_transform(D)

You can also pass the precomputed k-nearest neighbors and their corresponding distances as a tuple (knn_nbrs, knn_distances). Note that the rows must be in order, starting from point 0 to n-1. This feature also requires X to compute the embedding

embedding = trimap.TRIMAP(knn_tuple=(knn_nbrs, knn_distances)).fit_transform(X)

To calculate the global score, do:

gs = trimap.TRIMAP(verbose=False).global_score(digits.data, embedding)
print("global score %2.2f" % gs)

Parameters

The list of parameters is given blow:

  • n_dims: Number of dimensions of the embedding (default = 2)
  • n_inliers: Number of nearest neighbors for forming the nearest neighbor triplets (default = 10).
  • n_outliers: Number of outliers for forming the nearest neighbor triplets (default = 5).
  • n_random: Number of random triplets per point (default = 5).
  • distance: Distance measure ('euclidean' (default), 'manhattan', 'angular', 'hamming')
  • weight_adj: The value of gamma for the log-transformation (default = 500.0).
  • lr: Learning rate (default = 1000.0).
  • n_iters: Number of iterations (default = 400).

The other parameters include:

  • knn_tuple: Use the precomputed nearest-neighbors information in form of a tuple (knn_nbrs, knn_distances) (default = None)
  • use_dist_matrix: Use the precomputed pairwise distance matrix (default = False)
  • apply_pca: Reduce the number of dimensions of the data to 100 if necessary before applying the nearest-neighbor search (default = True).
  • opt_method: Optimization method {'sd' (steepest descent), 'momentum' (GD with momentum), 'dbd' (delta-bar-delta, default)}.
  • verbose: Print the progress report (default = True).
  • return_seq: Store the intermediate results and return the results in a tensor (default = False).

An example of adjusting these parameters:

import trimap
from sklearn.datasets import load_digits

digits = load_digits()

embedding = trimap.TRIMAP(n_inliers=20,
                          n_outliers=10,
                          n_random=10,
                          weight_adj=1000.0).fit_transform(digits.data)

The nearest-neighbor calculation is performed using ANNOY.

Examples

The following are some of the results on real-world datasets. The values of nearest-neighbor accuracy and global score are shown as a pair (NN, GS) on top of each figure. For more results, please refer to our paper.

USPS Handwritten Digits (n = 11,000, d = 256)

Visualizations of the USPS dataset

20 News Groups (n = 18,846, d = 100)

Visualizations of the 20 News Groups dataset

Tabula Muris (n = 53,760, d = 23,433)

Visualizations of the Tabula Muris Mouse Tissues dataset

MNIST Handwritten Digits (n = 70,000, d = 784)

Visualizations of the MNIST dataset

Fashion MNIST (n = 70,000, d = 784)

Visualizations of the  Fashion MNIST dataset

TV News (n = 129,685, d = 100)

Visualizations of the  TV News dataset

Runtime of t-SNE, LargeVis, UMAP, and TriMap in the hh:mm:ss format on a single machine with 2.6 GHz Intel Core i5 CPU and 16 GB of memory is given in the following table. We limit the runtime of each method to 12 hours. Also, UMAP runs out of memory on datasets larger than ~4M points.

Runtime of TriMap compared to other methods

Installing

Requirements:

  • numpy
  • scikit-learn
  • numba
  • annoy

Installing annoy

If you are having trouble with installing annoy on macOS using the command:

pip3 install annoy

you can alternatively try:

pip3 install git+https://github.com/sutao/[email protected]

Install Options

If you have all the requirements installed, you can use pip:

sudo pip install trimap

Please regularly check for updates and make sure you are using the most recent version. If you have TriMap installed and would like to upgrade to the newer version, you can use the command:

sudo pip install --upgrade --force-reinstall trimap

An alternative is to install the dependencies manually using anaconda and using pip to install TriMap:

conda install numpy
conda install scikit-learn
conda install numba
conda install annoy
pip install trimap

For a manual install get this package:

wget https://github.com/eamid/trimap/archive/master.zip
unzip master.zip
rm master.zip
cd trimap-master

Install the requirements

sudo pip install -r requirements.txt

or

conda install scikit-learn numba annoy

Install the package

python setup.py install

Support and Contribution

This implementation is still a work in progress. Any comments/suggestions/bug-reports are highly appreciated. Please feel free contact me at: [email protected]. If you would like to contribute to the code, please fork the project and send me a pull request.

Citation

If you use TriMap in your publications, please cite our current reference on arXiv:

@article{2019TRIMAP,
     author = {{Amid}, Ehsan and {Warmuth}, Manfred K.},
     title = "{TriMap: Large-scale Dimensionality Reduction Using Triplets}",
     journal = {arXiv preprint arXiv:1910.00204},
     archivePrefix = "arXiv",
     eprint = {1910.00204},
     year = 2019,
}

License

Please see the LICENSE file.

Owner
Ehsan Amid
Research Scientist at Google Mountain View
Ehsan Amid
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in šŸ‡°šŸ‡· Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Jan 05, 2023
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

éƒēæ” 357 Jan 04, 2023
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Code for our EMNLP 2021 paper ā€œHeterogeneous Graph Neural Networks for Keyphrase Generationā€

GATER This repository contains the code for our EMNLP 2021 paper ā€œHeterogeneous Graph Neural Networks for Keyphrase Generationā€. Our implementation is

Jiacheng Ye 12 Nov 24, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022