Experiments for distributed optimization algorithms

Overview

Network-Distributed Algorithm Experiments

--

This repository contains a set of optimization algorithms and objective functions, and all code needed to reproduce experiments in:

  1. "DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization" [PDF]. (code is in this file [link])

  2. "Communication-Efficient Distributed Optimization in Networks with Gradient Tracking and Variance Reduction" [PDF]. (code is in the previous version of this repo [link])

Due to the random data generation procedure, resulting graphs may be slightly different from those appeared in the paper, but conclusions remain the same.

If you find this code useful, please cite our papers:

@article{li2021destress,
  title={DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization},
  author={Li, Boyue and Li, Zhize and Chi, Yuejie},
  journal={arXiv preprint arXiv:2110.01165},
  year={2021}
}
@article{li2020communication,
  title={Communication-Efficient Distributed Optimization in Networks with Gradient Tracking and Variance Reduction},
  author={Li, Boyue and Cen, Shicong and Chen, Yuxin and Chi, Yuejie},
  journal={Journal of Machine Learning Research},
  volume={21},
  pages={1--51},
  year={2020}
}

Implemented objective functions

The gradient implementations of all objective functions are checked numerically.

Linear regression

Linear regression with random generated data. The objective function is $f(w) = \frac{1}{N} \sum_i (y_i - x_i^\top w)^2$

Logistic regression

Logistic regression with $l$-2 or nonconvex regularization with random generated data or the Gisette dataset or datasets from libsvmtools. The objective function is $$ f(w) = - \frac{1}{N} * \Big(\sum_i y_i \log \frac{1}{1 + exp(w^T x_i)} + (1 - y_i) \log \frac{exp(w^T x_i)}{1 + exp(w^T x_i)} \Big) + \frac{\lambda}{2} | w |_2^2 + \alpha \sum_j \frac{w_j^2}{1 + w_j^2} $$

One-hidden-layer fully-connected neural netowrk

One-hidden-layer fully-connected neural network with softmax loss on the MNIST dataset.

Implemented optimization algorithms

Centralized optimization algorithms

  • Gradient descent
  • Stochastic gradient descent
  • Nesterov's accelerated gradient descent
  • SVRG
  • SARAH

Distributed optimization algorithms (i.e. with parameter server)

  • ADMM
  • DANE

Decentralized optimization algorithms

  • Decentralized gradient descent
  • Decentralized stochastic gradient descent
  • Decentralized gradient descent with gradient tracking
  • EXTRA
  • NIDS
  • Network-DANE/SARAH/SVRG
  • GT-SARAH
  • DESTRESS
Owner
Boyue Li
Boyue Li
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 75 Jan 08, 2023
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
Cowsay - A rewrite of cowsay in python

Python Cowsay A rewrite of cowsay in python. Allows for parsing of existing .cow

James Ansley 3 Jun 27, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022