[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

Related tags

Deep LearningCoCLR
Overview

CoCLR: Self-supervised Co-Training for Video Representation Learning

arch

This repository contains the implementation of:

  • InfoNCE (MoCo on videos)
  • UberNCE (supervised contrastive learning on videos)
  • CoCLR

Link:

[Project Page] [PDF] [Arxiv]

News

  • [2021.01.29] Upload both RGB and optical flow dataset for UCF101 (links).
  • [2021.01.11] Update our paper for NeurIPS2020 final version: corrected InfoNCE-RGB-linearProbe baseline result in Table1 from 52.3% (pretrained for 800 epochs, unnessary and unfair) to 46.8% (pretrained for 500 epochs, fair comparison). Thanks @liuhualin333 for pointing out.
  • [2020.12.08] Update instructions.
  • [2020.11.17] Upload pretrained weights for UCF101 experiments.
  • [2020.10.30] Update "draft" dataloader files, CoCLR code, evaluation code as requested by some researchers. Will check and add detailed instructions later.

Pretrain Instruction

  • InfoNCE pretrain on UCF101-RGB
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_nce.py --net s3d --model infonce --moco-k 2048 \
--dataset ucf101-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 300 --schedule 250 280 -j 16
  • InfoNCE pretrain on UCF101-Flow
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_nce.py --net s3d --model infonce --moco-k 2048 \
--dataset ucf101-f-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 300 --schedule 250 280 -j 16
  • CoCLR pretrain on UCF101 for one cycle
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_coclr.py --net s3d --topk 5 --moco-k 2048 \
--dataset ucf101-2stream-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 100 --schedule 80 --name_prefix Cycle1-FlowMining_ -j 8 \
--pretrain {rgb_infoNCE_checkpoint.pth.tar} {flow_infoNCE_checkpoint.pth.tar}
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_coclr.py --net s3d --topk 5 --moco-k 2048 --reverse \
--dataset ucf101-2stream-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 100 --schedule 80 --name_prefix Cycle1-RGBMining_ -j 8 \
--pretrain {flow_infoNCE_checkpoint.pth.tar} {rgb_cycle1_checkpoint.pth.tar} 
  • InfoNCE pretrain on K400-RGB
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch \
--nproc_per_node=4 main_infonce.py --net s3d --model infonce --moco-k 16384 \
--dataset k400-2clip --lr 1e-3 --seq_len 32 --ds 1 --batch_size 32 \
--epochs 300 --schedule 250 280 -j 16
  • InfoNCE pretrain on K400-Flow
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch \
--nproc_per_node=4 teco_fb_main.py --net s3d --model infonce --moco-k 16384 \
--dataset k400-f-2clip --lr 1e-3 --seq_len 32 --ds 1 --batch_size 32 \
--epochs 300 --schedule 250 280 -j 16
  • CoCLR pretrain on K400 for one cycle
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_coclr.py --net s3d --topk 5 --moco-k 16384 \
--dataset k400-2stream-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 50 --schedule 40 --name_prefix Cycle1-FlowMining_ -j 8 \
--pretrain {rgb_infoNCE_checkpoint.pth.tar} {flow_infoNCE_checkpoint.pth.tar}
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_coclr.py --net s3d --topk 5 --moco-k 16384 --reverse \
--dataset k400-2stream-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 50 --schedule 40 --name_prefix Cycle1-RGBMining_ -j 8 \
--pretrain {flow_infoNCE_checkpoint.pth.tar} {rgb_cycle1_checkpoint.pth.tar} 

Finetune Instruction

cd eval/ e.g. finetune UCF101-rgb:

CUDA_VISIBLE_DEVICES=0,1 python main_classifier.py --net s3d --dataset ucf101 \
--seq_len 32 --ds 1 --batch_size 32 --train_what ft --epochs 500 --schedule 400 450 \
--pretrain {selected_rgb_pretrained_checkpoint.pth.tar}

then run the test with 10-crop (test-time augmentation is helpful, 10-crop gives better result than center-crop):

CUDA_VISIBLE_DEVICES=0,1 python main_classifier.py --net s3d --dataset ucf101 \
--seq_len 32 --ds 1 --batch_size 32 --train_what ft --epochs 500 --schedule 400 450 \
--test {selected_rgb_finetuned_checkpoint.pth.tar} --ten_crop

Nearest-neighbour Retrieval Instruction

cd eval/ e.g. nn-retrieval for UCF101-rgb

CUDA_VISIBLE_DEVICES=0 python main_classifier.py --net s3d --dataset ucf101 \
--seq_len 32 --ds 1 --test {selected_rgb_pretrained_checkpoint.pth.tar} --retrieval

Linear-probe Instruction

cd eval/

from extracted feature

The code support two methods on linear-probe, either feed the data end-to-end and freeze the backbone, or train linear layer on extracted features. Both methods give similar best results in our experiments.

e.g. on extracted features (after run NN-retrieval command above, features will be saved in os.path.dirname(checkpoint))

CUDA_VISIBLE_DEVICES=0 python feature_linear_probe.py --dataset ucf101 \
--test {feature_dirname} --final_bn --lr 1.0 --wd 1e-3

Note that the default setting should give an alright performance, maybe 1-2% lower than our paper's figure. For different datasets, lr and wd need to be tuned from lr: 0.1 to 1.0; wd: 1e-4 to 1e-1.

load data and freeze backbone

alternatively, feed data end-to-end and freeze the backbone.

CUDA_VISIBLE_DEVICES=0,1 python main_classifier.py --net s3d --dataset ucf101 \
--seq_len 32 --ds 1 --batch_size 32 --train_what last --epochs 100 --schedule 60 80 \
--optim sgd --lr 1e-1 --wd 1e-3 --final_bn --pretrain {selected_rgb_pretrained_checkpoint.pth.tar}

Similarly, lr and wd need to be tuned for different datasets for best performance.

Dataset

Result

Finetune entire network for action classification on UCF101: arch

Pretrained Weights

Our models:

Baseline models:

Kinetics400-pretrained models:

Owner
Tengda Han
Tengda Han
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023