A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

Overview

ML Lineage Helper

This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts include data, code, feature groups, features in a feature group, feature group queries, training jobs, and models.

Install

pip install git+https://github.com/aws-samples/ml-lineage-helper

Usage

Import ml_lineage_helper.

from ml_lineage_helper import *
from ml_lineage_helper.query_lineage import QueryLineage

Creating and Displaying ML Lineage

Lineage tracking can tie together a SageMaker Processing job, the raw data being processed, the processing code, the query you used against the Feature Store to fetch your training and test sets, the training and test data in S3, and the training code into a lineage represented as a DAG.

ml_lineage = MLLineageHelper()
lineage = ml_lineage.create_ml_lineage(estimator_or_training_job_name, model_name=model_name,
                                       query=query, sagemaker_processing_job_description=preprocessing_job_description,
                                       feature_group_names=['customers', 'claims'])
lineage

If you cloned your code from a version control hosting platform like GitHub or GitLab, ml_lineage_tracking can associate the URLs of the code with the artifacts that will be created. See below:

# Get repo links to processing and training code
processing_code_repo_url = get_repo_link(os.getcwd(), 'processing.py')
training_code_repo_url = get_repo_link(os.getcwd(), 'pytorch-model/train_deploy.py', processing_code=False)
repo_links = [processing_code_repo_url, training_code_repo_url]

# Create lineage
ml_lineage = MLLineageHelper()
lineage = ml_lineage.create_ml_lineage(estimator, model_name=model_name,
                                       query=query, sagemaker_processing_job_description=preprocessing_job_description,
                                       feature_group_names=['customers', 'claims'],
                                       repo_links=repo_links)
lineage
Name/Source Association Name/Destination Artifact Source ARN Artifact Destination ARN Source URI Base64 Feature Store Query String Git URL
pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job Produced Model arn:aws:sagemaker:us-west-2:000000000000:experiment-trial-component/pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job arn:aws:sagemaker:us-west-2:000000000000:artifact/013fa1be4ec1d192dac21abaf94ddded None None None
TrainingCode ContributedTo pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job arn:aws:sagemaker:us-west-2:000000000000:artifact/902d23ff64ef6d85dc27d841a967cd7d arn:aws:sagemaker:us-west-2:000000000000:experiment-trial-component/pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job s3://sagemaker-us-west-2-000000000000/pytorch-hosted-model-2021-08-26-15-55-22-071/source/sourcedir.tar.gz None https://gitlab.com/bwlind/ml-lineage-tracking/blob/main/ml-lineage-tracking/pytorch-model/train_deploy.py
TestingData ContributedTo pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job arn:aws:sagemaker:us-west-2:000000000000:artifact/1ae9dfab7a3817cbf14708d932d9142d arn:aws:sagemaker:us-west-2:000000000000:experiment-trial-component/pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job s3://sagemaker-us-west-2-000000000000/ml-lineage-tracking-v1/test.npy None None
TrainingData ContributedTo pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job arn:aws:sagemaker:us-west-2:000000000000:artifact/a0fd47c730f883b8e5228577fc5d5ef4 arn:aws:sagemaker:us-west-2:000000000000:experiment-trial-component/pytorch-hosted-model-2021-08-26-15-55-22-071-aws-training-job s3://sagemaker-us-west-2-000000000000/ml-lineage-tracking-v1/train.npy CnNlbGVjdCAqCmZyb20gImJvc3Rvbi1ob3VzaW5nLXY1LTE2Mjk3MzEyNjkiCg== None
fg-boston-housing-v5 ContributedTo TestingData arn:aws:sagemaker:us-west-2:000000000000:artifact/1969cb21bf48405e0f2bb2d33f48b7b2 arn:aws:sagemaker:us-west-2:000000000000:artifact/1ae9dfab7a3817cbf14708d932d9142d arn:aws:sagemaker:us-west-2:000000000000:feature-group/boston-housing-v5 None None
fg-boston-housing ContributedTo TestingData arn:aws:sagemaker:us-west-2:000000000000:artifact/d1b82165341cd78b93995d492b5adf7f arn:aws:sagemaker:us-west-2:000000000000:artifact/1ae9dfab7a3817cbf14708d932d9142d arn:aws:sagemaker:us-west-2:000000000000:feature-group/boston-housing None None
ProcessingJob ContributedTo fg-boston-housing-v5 arn:aws:sagemaker:us-west-2:000000000000:artifact/0a665c42c57f3b561e18a51a327d0a2f arn:aws:sagemaker:us-west-2:000000000000:artifact/1969cb21bf48405e0f2bb2d33f48b7b2 arn:aws:sagemaker:us-west-2:000000000000:processing-job/pytorch-workflow-preprocessing-26-15-41-18 None None
ProcessingInputData ContributedTo ProcessingJob arn:aws:sagemaker:us-west-2:000000000000:artifact/2204290e557c4c9feaaa4ef7e4d88f0c arn:aws:sagemaker:us-west-2:000000000000:artifact/0a665c42c57f3b561e18a51a327d0a2f s3://sagemaker-us-west-2-000000000000/ml-lineage-tracking-v1/data/raw None None
ProcessingCode ContributedTo ProcessingJob arn:aws:sagemaker:us-west-2:000000000000:artifact/69de4723ab0643c6ca8257bc6fbcfb4f arn:aws:sagemaker:us-west-2:000000000000:artifact/0a665c42c57f3b561e18a51a327d0a2f s3://sagemaker-us-west-2-000000000000/pytorch-workflow-preprocessing-26-15-41-18/input/code/preprocessing.py None https://gitlab.com/bwlind/ml-lineage-tracking/blob/main/ml-lineage-tracking/processing.py
ProcessingJob ContributedTo fg-boston-housing arn:aws:sagemaker:us-west-2:000000000000:artifact/0a665c42c57f3b561e18a51a327d0a2f arn:aws:sagemaker:us-west-2:000000000000:artifact/d1b82165341cd78b93995d492b5adf7f arn:aws:sagemaker:us-west-2:000000000000:processing-job/pytorch-workflow-preprocessing-26-15-41-18 None None
fg-boston-housing-v5 ContributedTo TrainingData arn:aws:sagemaker:us-west-2:000000000000:artifact/1969cb21bf48405e0f2bb2d33f48b7b2 arn:aws:sagemaker:us-west-2:000000000000:artifact/a0fd47c730f883b8e5228577fc5d5ef4 arn:aws:sagemaker:us-west-2:000000000000:feature-group/boston-housing-v5 None None
fg-boston-housing ContributedTo TrainingData arn:aws:sagemaker:us-west-2:000000000000:artifact/d1b82165341cd78b93995d492b5adf7f arn:aws:sagemaker:us-west-2:000000000000:artifact/a0fd47c730f883b8e5228577fc5d5ef4 arn:aws:sagemaker:us-west-2:000000000000:feature-group/boston-housing None None

You can optionally see the lineage represented as a graph instead of a Pandas DataFrame:

ml_lineage.graph()

If you're jumping in a notebook fresh and already have a model whose ML Lineage has been tracked, you can get this MLLineage object by using the following line of code:

ml_lineage = MLLineageHelper(sagemaker_model_name_or_model_s3_uri='my-sagemaker-model-name')
ml_lineage.df

Querying ML Lineage

If you have a data source, you can find associated Feature Groups by providing the data source's S3 URI or Artifact ARN:

query_lineage = QueryLineage()
query_lineage.get_feature_groups_from_data_source(artifact_arn_or_s3_uri)

You can also start with a Feature Group, and find associated data sources:

query_lineage = QueryLineage()
query_lineage.get_data_sources_from_feature_group(artifact_or_fg_arn, max_depth=3)

Given a Feature Group, you can also find associated models:

query_lineage = QueryLineage()
query_lineage.get_models_from_feature_group(artifact_or_fg_arn)

Given a SageMaker model name or artifact ARN, you can find associated Feature Groups.

query_lineage = QueryLineage()
query_lineage.get_feature_groups_from_model(artifact_arn_or_model_name)

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Owner
AWS Samples
AWS Samples
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022