Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Overview

Diaformer

Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022)

Diaformer is an efficient model for automatic diagnosis via symptoms sequence generation. It takes the sequence of symptoms as input, and predicts the inquiry symptoms in the way of sequence generation.

Figure 1: Illustration of symptom attention framework.

Requirements

Our experiments are conducted on Python 3.8 and Pytorch == 1.8.0. The main requirements are:

  • transformers==2.1.1
  • torch
  • numpy
  • tqdm
  • sklearn
  • keras
  • boto3

In the root directory, run following command to install the required libraries.

pip install -r requirement.txt

Usage

  1. Download data

    Download the datasets, then decompress them and put them in the corrsponding documents in \data. For example, put the data of Synthetic Dataset under data/synthetic_dataset.

    The dataset can be downloaded as following links:

  2. Build data

    Switch to the corresponding directory of the dataset and just run preprocess.py to preprocess data and generate a vocabulary of symptoms.

  3. Train and test

    Train and test models by the follow commands.

    Diaformer

    # Train and test on Diaformer
    # Run on MuZhi dataset
    python Diaformer.py --dataset_path data/muzhi_dataset --batch_size 16 --lr 5e-5 --min_probability 0.009 --max_turn 20 --start_test 10 
    
    # Run on Dxy dataset
    python Diaformer.py --dataset_path data/dxy_dataset --batch_size 16 --lr 5e-5 --min_probability 0.012 --max_turn 20 --start_test 10 
    
    # Run on Synthetic dataset
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10

    Diaformer_GPT2

    # Train and test on GPT2 variant of Diaformer
    python GPT2_variant.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10

    Diaformer_UniLM

    # Train and test on UniLM variant of Diaformer
    python UniLM_variant.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10

    Ablation study

    # run ablation study
    # w/o Sequence Shuffle
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10 --no_sequence_shuffle
    
    # w/o Synchronous Learning
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10 --no_synchronous_learning
    
    # w/o Repeated Sequence
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10 --no_repeated_sequence

    Generative inference

    # save the model
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10 --model_output_path models
    # use the trained model to output the results
    python predict.py --dataset_path data/synthetic_dataset --min_probability 0.01 --max_turn 20 --pretrained_model models/ --result_output_path results.json
Owner
Junying Chen
Junying Chen
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
Neural-Machine-Translation - Implementation of revolutionary machine translation models

Neural Machine Translation Framework: PyTorch Repository contaning my implementa

Utkarsh Jain 1 Feb 17, 2022
Chinese NER with albert/electra or other bert descendable model (keras)

Chinese NLP (albert/electra with Keras) Named Entity Recognization Project Structure ./ ├── NER │   ├── __init__.py │   ├── log

2 Nov 20, 2022
Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers and helping them make a wise buying decision.

Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers an

Parv Bhatt 1 Jan 01, 2022
Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper

Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont

44 Dec 31, 2022
Segmenter - Transformer for Semantic Segmentation

Segmenter - Transformer for Semantic Segmentation

592 Dec 27, 2022
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022
Predict the spans of toxic posts that were responsible for the toxic label of the posts

toxic-spans-detection An attempt at the SemEval 2021 Task 5: Toxic Spans Detection. The Toxic Spans Detection task of SemEval2021 required participant

Ilias Antonopoulos 3 Jul 24, 2022
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Dec 28, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
A large-scale (194k), Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

MedMCQA MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering A large-scale, Multiple-Choice Question Answe

MedMCQA 24 Nov 30, 2022
Retraining OpenAI's GPT-2 on Discord Chats

Train OpenAI's GPT-2 on Discord Chats Retraining a Text Generation Model on Discord Chats using gpt-2-simple that wraps existing model fine-tuning and

Ayush Mishra 4 Oct 27, 2022
CMeEE 数据集医学实体抽取

医学实体抽取_GlobalPointer_torch 介绍 思想来自于苏神 GlobalPointer,原始版本是基于keras实现的,模型结构实现参考现有 pytorch 复现代码【感谢!】,基于torch百分百复现苏神原始效果。 数据集 中文医学命名实体数据集 点这里申请,很简单,共包含九类医学

85 Dec 28, 2022
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.

TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset. TunBERT was applied to three NLP downstream tasks: Sentiment Analysis (S

InstaDeep Ltd 72 Dec 09, 2022