Chinese NER with albert/electra or other bert descendable model (keras)

Overview

Chinese NLP (albert/electra with Keras)

Named Entity Recognization

Project Structure

./
├── NER
│   ├── __init__.py
│   ├── log                                     训练nohup日志
│   │   ├── albert.out
│   │   ├── albert_crf.out
│   │   ├── electra.out
│   │   ├── electra_crf.out
│   │   ├── electra_regulization.out
│   │   └── electra_tiny.out
│   └── train.py
├── README.md
├── albert_base_google_zh                       albert_base权重
│   ├── albert_config.json
│   ├── albert_model.ckpt.data-00000-of-00001
│   ├── albert_model.ckpt.index
│   ├── checkpoint
│   └── vocab.txt
├── albert_tiny_google_zh                       albert_tiny权重
│   ├── albert_config.json
│   ├── albert_model.ckpt.data-00000-of-00001
│   ├── albert_model.ckpt.index
│   ├── checkpoint
│   └── vocab.txt
├── chinese_electra_small_ex_L-24_H-256_A-4     electra_small权重
│   ├── electra_small_ex.data-00000-of-00001
│   ├── electra_small_ex.index
│   ├── electra_small_ex.meta
│   ├── small_ex_discriminator_config.json
│   ├── small_ex_generator_config.json
│   └── vocab.txt
├── data                                        数据集
│   ├── pulmonary.test
│   ├── pulmonary.train
│   └── sict_train.txt
├── electra_180g_base                           electra_base权重
│   ├── base_discriminator_config.json
│   ├── base_generator_config.json
│   ├── electra_180g_base.ckpt.data-00000-of-00001
│   ├── electra_180g_base.ckpt.index
│   ├── electra_180g_base.ckpt.meta
│   └── vocab.txt
├── environment.yaml                            conda环境配置文件
├── main.py
├── path.py                                     所有路径
├── requirements.txt
├── utils                                       bert4keras包(也可pip下)
│   ├── __init__.py
│   ├── backend.py
│   ├── layers.py
│   ├── models.py
│   ├── optimizers.py
│   ├── snippets.py
│   └── tokenizers.py
└── weights                                     权重文件
    ├── pulmonary_albert_ner.h5
    ├── pulmonary_electra_ner.h5
    └── pulmonary_electra_tiny_ner_crf.h5

9 directories, 48 files

Dataset

三甲医院肺结节数据集,20000+字,BIO格式,形如:

中	B-ORG
共	I-ORG
中	I-ORG
央	I-ORG
致	O
中	B-ORG
国	I-ORG
致	I-ORG
公	I-ORG
党	I-ORG
十	I-ORG
一	I-ORG
大	I-ORG
的	O
贺	O
词	O

ATTENTION: 在处理自己数据集的时候需要注意:

  • 字与标签之间用空格("\ ")隔开
  • 其中句子与句子之间使用空行隔开

Steps

  1. 替换数据集
  2. 修改NER/train.py中的maxlen(超过截断,少于填充,最好设置训练集、测试集中最长句子作为MAX_SEQ_LEN)
  3. 下载权重,放到项目中
  4. 修改path.py中的地址
  5. 根据需要修改NER/train.py模型结构
  6. 训练前debug看下train_generator数据
  7. 训练

Model

albert

electra

Train

运行NER/train.py

Evaluate

train时给出的F1即为实体级别的F1

albert最佳F1

Epoch 61/300
13/13 [==============================] - 16s 1s/step - loss: 0.1343 - sparse_accuracy: 0.9713
test:  f1: 0.82428, precision: 0.81775, recall: 0.83092

electra

Epoch 29/300
13/13 [==============================] - 16s 1s/step - loss: 0.3487 - sparse_accuracy: 0.9146
test:  f1: 0.83189, precision: 0.81579, recall: 0.84863
[ICCV 2021] Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 86 Dec 28, 2022
Score-Based Point Cloud Denoising (ICCV'21)

Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in

Shitong Luo 79 Dec 26, 2022
CoNLL-English NER Task (NER in English)

CoNLL-English NER Task en | ch Motivation Course Project review the pytorch framework and sequence-labeling task practice using the transformers of Hu

Kevin 2 Jan 14, 2022
Tools to download and cleanup Common Crawl data

cc_net Tools to download and clean Common Crawl as introduced in our paper CCNet. If you found these resources useful, please consider citing: @inproc

Meta Research 483 Jan 02, 2023
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Kundan Krishna 6 Jun 04, 2021
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
CCKS-Title-based-large-scale-commodity-entity-retrieval-top1

- 基于标题的大规模商品实体检索top1 一、任务介绍 CCKS 2020:基于标题的大规模商品实体检索,任务为对于给定的一个商品标题,参赛系统需要匹配到该标题在给定商品库中的对应商品实体。 输入:输入文件包括若干行商品标题。 输出:输出文本每一行包括此标题对应的商品实体,即给定知识库中商品 ID,

43 Nov 11, 2022
Lightweight utility tools for the detection of multiple spellings, meanings, and language-specific terminology in British and American English

Breame ( British English and American English) Breame is a lightweight Python package with a number of utility tools to aid in the detection of words

Charles 8 Oct 10, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

ESPnet 5.9k Jan 03, 2023
A Semi-Intelligent ChatBot filled with statistical and economical data for the Premier League.

MONEYBALL - ChatBot Module: 4006CEM, Class: B, Group: 5 Contributors: Jonas Djondo Roshan Kc Cole Samson Daniel Rodrigues Ihteshaam Naseer Kind remind

Jonas Djondo 1 Nov 18, 2021
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 27, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement

MTFAA-Net Unofficial PyTorch implementation of Baidu's MTFAA-Net: "Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speec

Shimin Zhang 87 Dec 19, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

ASYML 2.3k Jan 07, 2023