A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

Overview

RE2

This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflow implementation: https://github.com/alibaba-edu/simple-effective-text-matching.

Quick Links

Simple and Effective Text Matching

RE2 is a fast and strong neural architecture for general purpose text matching applications. In a text matching task, a model takes two text sequences as input and predicts their relationship. This method aims to explore what is sufficient for strong performance in these tasks. It simplifies many slow components which are previously considered as core building blocks in text matching, while keeping three key features directly available for inter-sequence alignment: original point-wise features, previous aligned features, and contextual features.

RE2 achieves performance on par with the state of the art on four benchmark datasets: SNLI, SciTail, Quora and WikiQA, across tasks of natural language inference, paraphrase identification and answer selection with no or few task-specific adaptations. It has at least 6 times faster inference speed compared to similarly performed models.

The following table lists major experiment results. The paper reports the average and standard deviation of 10 runs. Inference time (in seconds) is measured by processing a batch of 8 pairs of length 20 on Intel i7 CPUs. The computation time of POS features used by CSRAN and DIIN is not included.

Model SNLI SciTail Quora WikiQA Inference Time
BiMPM 86.9 - 88.2 0.731 0.05
ESIM 88.0 70.6 - - -
DIIN 88.0 - 89.1 - 1.79
CSRAN 88.7 86.7 89.2 - 0.28
RE2 88.9±0.1 86.0±0.6 89.2±0.2 0.7618 ±0.0040 0.03~0.05

Refer to the paper for more details of the components and experiment results.

Setup

Data used in the paper are prepared as follows:

SNLI

  • Download and unzip SNLI (pre-processed by Tay et al.) to data/orig.
  • Unzip all zip files in the "data/orig/SNLI" folder. (cd data/orig/SNLI && gunzip *.gz)
  • cd data && python prepare_snli.py

SciTail

  • Download and unzip SciTail dataset to data/orig.
  • cd data && python prepare_scitail.py

Quora

  • Download and unzip Quora dataset (pre-processed by Wang et al.) to data/orig.
  • cd data && python prepare_quora.py

WikiQA

  • Download and unzip WikiQA to data/orig.
  • cd data && python prepare_wikiqa.py
  • Download and unzip evaluation scripts. Use the make -B command to compile the source files in qg-emnlp07-data/eval/trec_eval-8.0. Move the binary file "trec_eval" to resources/.

Usage

To train a new text matching model, run the following command:

python train.py $config_file.json5

Example configuration files are provided in configs/:

  • configs/main.json5: replicate the main experiment result in the paper.
  • configs/robustness.json5: robustness checks
  • configs/ablation.json5: ablation study

The instructions to write your own configuration files:

[
    {
        name: 'exp1', // name of your experiment, can be the same across different data
        __parents__: [
            'default', // always put the default on top
            'data/quora', // data specific configurations in `configs/data`
            // 'debug', // use "debug" to quick debug your code  
        ],
        __repeat__: 5,  // how may repetitions you want
        blocks: 3, // other configurations for this experiment 
    },
    // multiple configurations are executed sequentially
    {
        name: 'exp2', // results under the same name will be overwritten
        __parents__: [
            'default', 
            'data/quora',
        ],
        __repeat__: 5,  
        blocks: 4, 
    }
]

To check the configurations only, use

python train.py $config_file.json5 --dry

To evaluate an existed model, use python evaluate.py $model_path $data_file, here's an example:

python evaluate.py models/snli/benchmark/best.pt data/snli/train.txt 
python evaluate.py models/snli/benchmark/best.pt data/snli/test.txt 

Note that multi-GPU training is not yet supported in the pytorch implementation. A single 16G GPU is sufficient for training when blocks < 5 with hidden size 200 and batch size 512. All the results reported in the paper except the robustness checks can be reproduced with a single 16G GPU.

Citation

Please cite the ACL paper if you use RE2 in your work:

@inproceedings{yang2019simple,
  title={Simple and Effective Text Matching with Richer Alignment Features},
  author={Yang, Runqi and Zhang, Jianhai and Gao, Xing and Ji, Feng and Chen, Haiqing},
  booktitle={Association for Computational Linguistics (ACL)},
  year={2019}
}

License

This project is under Apache License 2.0.

A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
sangha, pronounced "suhng-guh", is a social networking, booking platform where students and teachers can share their practice.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

Courtney Newcomer 17 Sep 29, 2021
Uncomplete archive of files from the European Nopsled Team

European Nopsled CTF Archive This is an archive of collected material from various Capture the Flag competitions that the European Nopsled team played

European Nopsled 4 Nov 24, 2021
Sentiment Analysis Project using Count Vectorizer and TF-IDF Vectorizer

Sentiment Analysis Project This project contains two sentiment analysis programs for Hotel Reviews using a Hotel Reviews dataset from Datafiniti. The

Simran Farrukh 0 Mar 28, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
The aim of this task is to predict someone's English proficiency based on a text input.

English_proficiency_prediction_NLP The aim of this task is to predict someone's English proficiency based on a text input. Using the The NICT JLE Corp

1 Dec 13, 2021
We have built a Voice based Personal Assistant for people to access files hands free in their device using natural language processing.

Voice Based Personal Assistant We have built a Voice based Personal Assistant for people to access files hands free in their device using natural lang

Rushabh 2 Nov 13, 2021
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
SimCTG - A Contrastive Framework for Neural Text Generation

A Contrastive Framework for Neural Text Generation Authors: Yixuan Su, Tian Lan,

Yixuan Su 345 Jan 03, 2023
Example code for "Real-World Natural Language Processing"

Real-World Natural Language Processing This repository contains example code for the book "Real-World Natural Language Processing." AllenNLP (2.5.0 or

Masato Hagiwara 303 Dec 17, 2022
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Snm Logic 1 Dec 20, 2021
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
DeepPavlov Tutorials

DeepPavlov tutorials DeepPavlov: Sentence Classification with Word Embeddings DeepPavlov: Transfer Learning with BERT. Classification, Tagging, QA, Ze

Neural Networks and Deep Learning lab, MIPT 28 Sep 13, 2022
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based

Naman Rastogi 4 Jan 01, 2023
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
A Flask Sentiment Analysis API, with visual implementation

The Sentiment Analysis Api was created using python flask module,it allows users to parse a text or sentence throught the (?text) arguement, then view the sentiment analysis of that sentence. It can

Ifechukwudeni Oweh 10 Jul 17, 2022
Neural network sequence labeling model

Sequence labeler This is a neural network sequence labeling system. Given a sequence of tokens, it will learn to assign labels to each token. Can be u

Marek Rei 250 Nov 03, 2022