The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

Related tags

Deep LearningNAD
Overview

This is the project page for the paper:

Architecture Disentanglement for Deep Neural Networks,
Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan Zhang, Ke Li, Feiyue Huang, Ling Shao, Rongrong Ji

Updates

  • (2021.11.18) The project page for NAD is avaliable.

Pretrained Models For Place

ImageNet pretrained model can be downloaded online. As for the place dataset, we trained the four networks on place365 dataset. The pretrained model can be download at google driver, they should be placed at the folder NAD/pretrain_model/

Requirements

  • Python=3.7
  • PyTorch=1.7.1, torchvision=0.8.2, cudatoolkit=10.1

Steps (vgg16 and imagenet for example)

  1. Install Anaconda, create a virtual environment and install the requirements above. And then
git clone https://github.com/hujiecpp/NAD
  1. Download ImageNet dataset and Place365 dataset and then modify the NAD/tools/config.py. As for the Place365 dataset, use 'NAD/tools/make_dataset.py' to convert it to a suitable format.

  2. Find the path for all categories at network

CUDA_VISIBLE_DEVICES=0 python findpath.py --net vgg16 --dataset imagenet --beta 4.5
  1. Test one image using its path
CUDA_VISIBLE_DEVICES=0 python cam_1x1.py --model vgg16 --dataset imagenet --epoch 20 --mask_rate 0.05
  1. Generate 2x2 images randomly and test path hit rate for each layer
CUDA_VISIBLE_DEVICES=0 python cam_2x2.py --model vgg16 --dataset imagenet --epoch 20 --mask_rate 0.05
  1. Calculate the top3 substructure similarity for each class and compare it with the result of top3 classified by the classification network
CUDA_VISIBLE_DEVICES=0 python similarSubArch.py --model vgg16 --dataset imagenet --epoch 20

Citation

If our paper helps your research, please cite it in your publications:

@inproceedings{hu2021architecture,
  title={Architecture disentanglement for deep neural networks},
  author={Hu, Jie and Cao, Liujuan and Tong, Tong and Ye, Qixiang and Zhang, Shengchuan and Li, Ke and Huang, Feiyue and Shao, Ling and Ji, Rongrong},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={672--681},
  year={2021}
}
Owner
Jie Hu
Phd Student, Xiamen University.
Jie Hu
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
This repository provides the official code for GeNER (an automated dataset Generation framework for NER).

GeNER This repository provides the official code for GeNER (an automated dataset Generation framework for NER). Overview of GeNER GeNER allows you to

DMIS Laboratory - Korea University 50 Nov 30, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022