Learning from graph data using Keras

Overview

Steps to run =>

  • Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data
  • unzip the files in the folder input/cora
  • cd code
  • python eda.py
  • python word_features_only.py # for baseline model 53.28% accuracy
  • python graph_embedding.py # for model_1 73.06% accuracy
  • python graph_features_embedding.py # for model_2 76.35% accuracy

Learning from Graph data using Keras and Tensorflow

Cora Data set Citation Graph

Motivation :

There is a lot of data out there that can be represented in the form of a graph in real-world applications like in Citation Networks, Social Networks (Followers graph, Friends network, โ€ฆ ), Biological Networks or Telecommunications.
Using Graph extracted features can boost the performance of predictive models by relying of information flow between close nodes. However, representing graph data is not straightforward especially if we donโ€™t intend to implement hand-crafted features.
In this post we will explore some ways to deal with generic graphs to do node classification based on graph representations learned directly from data.

Dataset :

The Cora citation network data set will serve as the base to the implementations and experiments throughout this post. Each node represents a scientific paper and edges between nodes represent a citation relation between the two papers.
Each node is represented by a set of binary features ( Bag of words ) as well as by a set of edges that link it to other nodes.
The dataset has 2708 nodes classified into one of seven classes. The network has 5429 links. Each Node is also represented by a binary word features indicating the presence of the corresponding word. Overall there is 1433 binary (Sparse) features for each node. In what follows we only use 140 samples for training and the rest for validation/test.

Problem Setting :

Problem : Assigning a class label to nodes in a graph while having few training samples.
Intuition/Hypothesis : Nodes that are close in the graph are more likely to have similar labels.
Solution : Find a way to extract features from the graph to help classify new nodes.

Proposed Approach :


Baseline Model :

Simple Baseline Model

We first experiment with the simplest model that learn to predict node classes using only the binary features and discarding all graph information.
This model is a fully-connected Neural Network that takes as input the binary features and outputs the class probabilities for each node.

Baseline model Accuracy : 53.28%

****This is the initial accuracy that we will try to improve on by adding graph based features.

Adding Graph features :

One way to automatically learn graph features by embedding each node into a vector by training a network on the auxiliary task of predicting the inverse of the shortest path length between two input nodes like detailed on the figure and code snippet below :

Learning an embedding vector for each node

The next step is to use the pre-trained node embedding as input to the classification model. We also add the an additional input which is the average binary features of the neighboring nodes using distance of learned embedding vectors.

The resulting classification network is described in the following figure :

Using pretrained embeddings to do node classification

Graph embedding classification model Accuracy : 73.06%

We can see that adding learned graph features as input to the classification model helps significantly improve the classification accuracy compared to the baseline model from **53.28% to 73.06% ** ๐Ÿ˜„ .

Improving Graph feature learning :

We can look to further improve the previous model by pushing the pre-training further and using the binary features in the node embedding network and reusing the pre-trained weights from the binary features in addition to the node embedding vector. This results in a model that relies on more useful representations of the binary features learned from the graph structure.

Improved Graph embedding classification model Accuracy : 76.35%

This additional improvement adds a few percent accuracy compared to the previous approach.

Conclusion :

In this post we saw that we can learn useful representations from graph structured data and then use these representations to improve the generalization performance of a node classification model from **53.28% to 76.35% ** ๐Ÿ˜Ž .

Code to reproduce the results is available here : https://github.com/CVxTz/graph_classification

Owner
Mansar Youness
Mansar Youness
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
๐Ÿ”ฎ Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022