Joint parameterization and fitting of stroke clusters

Overview

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters

Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Alla Sheffer1

1University of British Columbia, 2NVIDIA, 3Université de Montréal

@article{strokestrip,
	title = {StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters},
	author = {Pagurek van Mossel, Dave and Liu, Chenxi and Vining, Nicholas and Bessmeltsev, Mikhail and Sheffer, Alla},
	year = 2021,
	journal = {ACM Transactions on Graphics},
	publisher = {ACM},
	address = {New York, NY, USA},
	volume = 40,
	number = 4,
	doi = {10.1145/3450626.3459777}
}

StrokeStrip jointly parameterizes clusters of strokes (a) that, together, represent strips following a single intended curve (b). We compute the parameterization of this strip (c) restricted to the domain of the input strokes (d), which we then use to produce the parameterized intended curve (d).

Usage

./strokestrip input.scap [...args]

Additional optional arguments:

  • --cut: If your input strokes include sharp back-and-forth turns, this flag will use the Cornucopia library to detect and cut such strokes.
  • --debug: Generate extra SVG outputs to introspect the algorithm
  • --rainbow: Generate an SVG showing parameterized strokes coloured with a rainbow gradient (default is red-to-blue)
  • --widths: Generate fitted widths along with centerlines
  • --taper: Force fitted widths to taper to 0 at endpoints

Input format

Drawings are inputted as .scap files, which encode strokes as polylines. Strokes are contained in pairs of braces { ... }. Each stroke has a unique stroke id and a cluster id shared by all strokes that colleectively make up one intended curve. Polyline samples can omit pressure by setting it to a default value of 0.

#[width]	[height]
@[thickness]
{
	#[stroke_id]	[cluster_id]
	[x1]	[y1]	[pressure1]
	[x2]	[y2]	[pressure2]
	[x3]	[y3]	[pressure3]
	[...etc]
}
[...etc]

Example .scap inputs are found in the examples/ directory.

Stroke clusters for new .scap files can be generated using the StrokeAggregator ground truth labeling program.

Development

Dependencies

Gurobi

This package relies on the Gurobi optimization library, which must be installed and licensed on your machine. If you are at a university, a free academic license can be obtained. This project was build with Gurobi 9.0; if you are using a newer version of Gurobi, update FindGUROBI.cmake to reference your installed version (e.g. change gurobi90 to gurobi91 for version 9.1.)

Eigen 3

Ensure that Eigen is installed and that its directory is included in $CMAKE_PREFIX_PATH.

Building

StrokeStrip is configured with Cmake:

mkdir build
cd build
cmake ..
make
Owner
Dave Pagurek
Programmer and digital artist. MSc from UBC CS '21, UWaterloo Software Engineering '19.
Dave Pagurek
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
2 Jul 19, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022