Learning Logic Rules for Document-Level Relation Extraction

Related tags

Deep LearningLogiRE
Overview

LogiRE

Learning Logic Rules for Document-Level Relation Extraction

We propose to introduce logic rules to tackle the challenges of doc-level RE.

Equipped with logic rules, our LogiRE framework can not only explicitly capture long-range semantic dependencies, but also show more interpretability.

We combine logic rules and outputs of neural networks for relation extraction.

drawing

As shown in the example, the relation between kate and Britain can be identified according to the other relations and the listed logic rule.

The overview of LogiRE framework is shown below.

drawing

Data

  • Download the preprocessing script and meta data

    DWIE
    ├── data
    │   ├── annos
    │   └── annos_with_content
    ├── en_core_web_sm-2.3.1
    │   ├── build
    │   ├── dist
    │   ├── en_core_web_sm
    │   ├── en_core_web_sm.egg-info
    │   ├── MANIFEST.in
    │   ├── meta.json
    │   ├── PKG-INFO
    │   ├── setup.cfg
    │   └── setup.py
    ├── glove.6B.100d.txt
    ├── md5sum.txt
    └── read_docred_style.py
    
  • Install Spacy (en_core_web_sm-2.3.1)

    cd en_core_web_sm-2.3.1
    pip install .
  • Download the original data from DWIE

  • Generate docred-style data

    python3 read_docred_style.py

    The docred-style doc-RE data will be generated at DWIE/data/docred-style. Please compare the md5sum codes of generated files with the records in md5sum.txt to make sure you generate the data correctly.

Train & Eval

Requirements

  • pytorch >= 1.7.1
  • tqdm >= 4.62.3
  • transformers >= 4.4.2

Backbone Preparation

The LogiRE framework requires a backbone NN model for the initial probabilistic assessment on each triple.

The probabilistic assessments of the backbone model and other related meta data should be organized in the following format. In other words, please train any doc-RE model with the docred-style RE data before and dump the outputs as below.

{
    'train': [
        {
            'N': <int>,
            'logits': <torch.FloatTensor of size (N, N, R)>,
            'labels': <torch.BoolTensor of size (N, N, R)>,
            'in_train': <torch.BoolTensor of size (N, N, R)>,
        },
        ...
    ],
    'dev': [
        ...
    ]
    'test': [
        ...
    ]
}

Each example contains four items:

  • N: the number of entities in this example.
  • logits: the logits of all triples as a tensor of size (N, N, R). R is the number of relation types (Na excluded)
  • labels: the labels of all triples as a tensor of size (N, N, R).
  • in_train: the in_train masks of all triples as a tensor of size(N, N, R), used for ign f1 evaluation. True indicates the existence of the triple in the training split.

For convenience, we provide the dump of ATLOP as examples. Feel free to download and try it directly.

Train

python3 main.py --mode train \
    --save_dir <the directory for saving logs and checkpoints> \
    --rel_num <the number of relation types (Na excluded)> \
    --ent_num <the number of entity types> \
    --n_iters <the number of iterations for optimization> \
    --max_depth <max depths of the logic rules> \
    --data_dir <the directory of the docred-style data> \
    --backbone_path <the path of the backbone model dump>

Evaluation

python3 main.py --mode test \
    --save_dir <the directory for saving logs and checkpoints> \
    --rel_num <the number of relation types (Na excluded)> \
    --ent_num <the number of entity types> \
    --n_iters <the number of iterations for optimization> \
    --max_depth <max depths of the logic rules> \
    --data_dir <the directory of the docred-style data> \
    --backbone_path <the path of the backbone model dump>

Results

  • LogiRE framework outperforms strong baselines on both relation performance and logical consistency.

    drawing
  • Injecting logic rules can improve long-range dependencies modeling, we show the relation performance on each interval of different entity pair distances. LogiRE framework outperforms the baseline and the gap becomes larger when entity pair distances increase. Logic rules actually serve as shortcuts for capturing long-range semantics in concept-level instead of token-level.

    drawing

Acknowledgements

We sincerely thank RNNLogic which largely inspired us and DWIE & DocRED for providing the benchmarks.

Reference

@inproceedings{ru-etal-2021-learning,
    title = "Learning Logic Rules for Document-Level Relation Extraction",
    author = "Ru, Dongyu  and
      Sun, Changzhi  and
      Feng, Jiangtao  and
      Qiu, Lin  and
      Zhou, Hao  and
      Zhang, Weinan  and
      Yu, Yong  and
      Li, Lei",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.95",
    pages = "1239--1250",
}
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023