Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Overview

High-Performance Brain-to-Text Communication via Handwriting

System diagram

Overview

This repo is associated with this manuscript, preprint and dataset. The code can be used to run an offline reproduction of the main result: high-performance neural decoding of attempted handwriting movements. The jupyter notebooks included here implement all steps of the process, including labeling the neural data with HMMs, training an RNN to decode the neural data into sequences of characters, applying a language model to the RNN outputs, and summarizing the performance on held-out data.

Results from each step are saved to disk and used in future steps. Intermediate results and models are available with the data - download these to explore certain steps without needing to run all prior ones (except for Step 3, which you'll need to run on your own because it produces ~100 GB of files).

Results

Below are the main results from my original run of this code. Results are shown from both train/test partitions ('HeldOutTrials' and 'HeldOutBlocks') and were generaetd with this notebook. 95% confidence intervals are reported in brackets for each result.

HeldOutTrials

Character error rate (%) Word error rate (%)
Raw 2.78 [2.20, 3.41] 12.88 [10.28, 15.63]
Bigram LM 0.80 [0.44, 1.22] 3.64 [2.11, 5.34]
Bigram LM + GPT-2 Rescore 0.34 [0.14, 0.61] 1.97 [0.78, 3.41]

HeldOutBlocks

Character error rate (%) Word error rate (%)
Raw 5.32 [4.81, 5.86] 23.28 [21.27, 25.41]
Bigram LM 1.69 [1.32, 2.10] 6.10 [4.97, 7.25]
Bigram LM + GPT-2 Rescore 0.90 [0.62, 1.23] 3.21 [2.37, 4.11]

Train/Test Partitions

Following our manuscript, we use two separate train/test partitions (available with the data): 'HeldOutBlocks' holds out entire blocks of sentences that occur later in each session, while 'HeldOutTrials' holds out single sentences more uniformly.

'HeldOutBlocks' is more challenging because changes in neural activity accrue over time, thus requiring the RNN to be robust to neural changes that it has never seen before from held-out blocks. In 'HeldOutTrials', the RNN can train on other sentences that occur very close in time to each held-out sentence. For 'HeldOutBlocks' we found that training the RNN in the presence of artificial firing rate drifts improved generalization, while this was not necessary for 'HeldOutTrials'.

Dependencies

  • General
    • python>=3.6
    • tensorflow=1.15
    • numpy (tested with 1.17)
    • scipy (tested with 1.1.0)
    • scikit-learn (tested with 0.20)
  • Step 1: Time Warping
  • Steps 4-5: RNN Training & Inference
    • Requires a GPU (calls cuDNN for the GRU layers)
  • Step 6: Bigram Language Model
  • Step 7: GPT-2 Rescoring
Owner
Francis R. Willett
Research Scientist at the Neural Prosthetics Translational Laboratory at Stanford University.
Francis R. Willett
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022