PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

Related tags

Deep LearningSlowFast
Overview

PySlowFast

PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficient training. This repository includes implementations of the following methods:

Introduction

The goal of PySlowFast is to provide a high-performance, light-weight pytorch codebase provides state-of-the-art video backbones for video understanding research on different tasks (classification, detection, and etc). It is designed in order to support rapid implementation and evaluation of novel video research ideas. PySlowFast includes implementations of the following backbone network architectures:

  • SlowFast
  • Slow
  • C2D
  • I3D
  • Non-local Network
  • X3D

Updates

License

PySlowFast is released under the Apache 2.0 license.

Model Zoo and Baselines

We provide a large set of baseline results and trained models available for download in the PySlowFast Model Zoo.

Installation

Please find installation instructions for PyTorch and PySlowFast in INSTALL.md. You may follow the instructions in DATASET.md to prepare the datasets.

Quick Start

Follow the example in GETTING_STARTED.md to start playing video models with PySlowFast.

Visualization Tools

We offer a range of visualization tools for the train/eval/test processes, model analysis, and for running inference with trained model. More information at Visualization Tools.

Contributors

PySlowFast is written and maintained by Haoqi Fan, Yanghao Li, Bo Xiong, Wan-Yen Lo, Christoph Feichtenhofer.

Citing PySlowFast

If you find PySlowFast useful in your research, please use the following BibTeX entry for citation.

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}
Owner
Meta Research
Meta Research
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

172 Dec 23, 2022