Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

Overview

Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Examples of generated audio using the Flickr8k Audio Corpus: https://ebadawy.github.io/post/speech_style_transfer. Note that these examples are a result of feeding audio reconstructions of this VAE-GAN to an implementation of WaveNet.

1. Data Preperation

Dataset file structure:

/path/to/database
├── spkr_1
│   ├── sample.wav
├── spkr_2
│   ├── sample.wav
│   ...
└── spkr_N
    ├── sample.wav
    ...
# The directory under each speaker cannot be nested.

Here is an example script for setting up data preparation from the Flickr8k Audio Corpus. The speakers of interest are the same as in the paper, but may be modified to other speakers if desirable.

2. Data Preprocessing

The prepared dataset is organised into a train/eval/test split, the audio is preprocessed and melspectrograms are computed.

python preprocess.py --dataset [path/to/dataset] --test-size [float] --eval-size [float]

3. Training

The VAE-GAN model uses the melspectrograms to learn style transfer between two speakers.

python train.py --model_name [name of the model] --dataset [path/to/dataset]

3.1. Visualization

By default, the code plots a batch of input and output melspectrograms every epoch. You may add --plot-interval -1 to the above command to disable it. Alternatively you may add --plot-interval 20 to plot every 20 epochs.

3.2. Saving Models

By default, models are saved every epoch. With smaller datasets than Flickr8k it may be more appropriate to save less frequently by adding --checkpoint_interval 20 for 20 epochs.

3.3. Epochs

The max number of epochs may be set with --n_epochs. For smaller datasets, you may want to increase this to more than the default 100. To load a pretrained model you can use --epoch and set it to the epoch number of the saved model.

3.4. Pretrained Model

You can access pretrained model files here. By downloading and storing them in a directory src/saved_models/pretrained, you may call it for training or inference with:

--model_name pretrained --epoch 99

Note that for inference the discriminator files D1 and D2 are not required (meanwhile for training further they are). Also here, G1 refers to the decoding generator for speaker 1 (female) and G2 for speaker 2 (male).

4. Inference

The trained VAE-GAN is used for inference on a specified audio file. It works by; sliding a window over a full melspectrogram, locally inferring melspectrogram subsamples, and averaging the overlap. The script then uses Griffin-Lim to reconstruct audio from the generated melspectrogram.

python inference.py --model_name [name of the model] --epoch [epoch number] --trg_id [id of target generator] --wav [path/to/source_audio.wav]

For achieving high quality results like the paper you can feed the reconstructed audio to trained vocoders such as WaveNet. An example pipeline of using this model with wavenet can be found here.

4.1. Directory Input

Instead of a single .wav as input you may specify a whole directory of .wav files by using --wavdir instead of --wav.

4.2. Visualization

By default, plotting input and output melspectrograms is enabled. This is useful for a visual comparison between trained models. To disable set --plot -1

4.3. Reconstructive Evaluation

Alongside the process of generating, components for reconstruction and cyclic reconstruction may be enabled by specifying the generator id of the source audio --src_id [id of source generator].

When set, SSIM metrics for reconstructed melspectrograms and cyclically reconstructed melspectrograms are computed and printed at the end of inference.

This is an extra feature to help with comparing the reconstructive capabilities of different models. The higher the SSIM, the higher quality the reconstruction.

References

Citation

If you find this code useful please cite us in your work:

@inproceedings{AlBadawy2020,
  author={Ehab A. AlBadawy and Siwei Lyu},
  title={{Voice Conversion Using Speech-to-Speech Neuro-Style Transfer}},
  year=2020,
  booktitle={Proc. Interspeech 2020},
  pages={4726--4730},
  doi={10.21437/Interspeech.2020-3056},
  url={http://dx.doi.org/10.21437/Interspeech.2020-3056}
}

TODO:

  • Rewrite preprocess.py to handle:
    • multi-process feature extraction
    • display error messages for failed cases
  • Create:
    • Notebook for data visualisation
  • Want to add something else? Please feel free to submit a PR with your changes or open an issue for that.
Owner
Ehab AlBadawy
Ehab AlBadawy
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022