EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Overview

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

This is the official implementation for "Frustratingly Simple Pretraining Alternatives to Masked Language Modeling" (EMNLP 2021).

Requirements

  • torch
  • transformers
  • datasets
  • scikit-learn
  • tensorflow
  • spacy

How to pre-train

1. Clone this repository

git clone https://github.com/gucci-j/light-transformer-emnlp2021.git

2. Install required packages

cd ./light-transformer-emnlp2021
pip install -r requirements.txt

requirements.txt is located just under light-transformer-emnlp2021.

We also need spaCy's en_core_web_sm for preprocessing. If you have not installed this model, please run python -m spacy download en_core_web_sm.

3. Preprocess datasets

cd ./src/utils
python preprocess_roberta.py --path=/path/to/save/data/

You need to specify the following argument:

  • path: (str) Where to save the processed data?

4. Pre-training

You need to secify configs as command line arguments. Sample configs for pre-training MLM are shown as below. python pretrainer.py --help will display helper messages.

cd ../
python pretrainer.py \
--data_dir=/path/to/dataset/ \
--do_train \
--learning_rate=1e-4 \
--weight_decay=0.01 \
--adam_epsilon=1e-8 \
--max_grad_norm=1.0 \
--num_train_epochs=1 \
--warmup_steps=12774 \
--save_steps=12774 \
--seed=42 \
--per_device_train_batch_size=16 \
--logging_steps=100 \
--output_dir=/path/to/save/weights/ \
--overwrite_output_dir \
--logging_dir=/path/to/save/log/files/ \
--disable_tqdm=True \
--prediction_loss_only \
--fp16 \
--mlm_prob=0.15 \
--pretrain_model=RobertaForMaskedLM 
  • pretrain_model should be selected from:
    • RobertaForMaskedLM (MLM)
    • RobertaForShuffledWordClassification (Shuffle)
    • RobertaForRandomWordClassification (Random)
    • RobertaForShuffleRandomThreeWayClassification (Shuffle+Random)
    • RobertaForFourWayTokenTypeClassification (Token Type)
    • RobertaForFirstCharPrediction (First Char)

Check the pre-training process

You can monitor the progress of pre-training via the Tensorboard. Simply run the following:

tensorboard --logdir=/path/to/log/dir/

Distributed training

pretrainer.py is compatible with distributed training. Sample configs for pre-training MLM are as follows.

python -m torch/distributed/launch.py \
--nproc_per_node=8 \
pretrainer.py \
--data_dir=/path/to/dataset/ \
--model_path=None \
--do_train \
--learning_rate=5e-5 \
--weight_decay=0.01 \
--adam_epsilon=1e-8 \
--max_grad_norm=1.0 \
--num_train_epochs=1 \
--warmup_steps=24000 \
--save_steps=1000 \
--seed=42 \
--per_device_train_batch_size=8 \
--logging_steps=100 \
--output_dir=/path/to/save/weights/ \
--overwrite_output_dir \
--logging_dir=/path/to/save/log/files/ \
--disable_tqdm \
--prediction_loss_only \
--fp16 \
--mlm_prob=0.15 \
--pretrain_model=RobertaForMaskedLM 

For more details about launch.py, please refer to https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py.

Mixed precision training

Installation

  • For PyTorch version >= 1.6, there is a native functionality to enable mixed precision training.
  • For older versions, NVIDIA apex must be installed.
    • You might encounter some errors when installing apex due to permission problems. To fix these, specify export TMPDIR='/path/to/your/favourite/dir/' and change permissions of all files under apex/.git/ to 777.
    • You also need to specify an optimisation method from https://nvidia.github.io/apex/amp.html.

Usage
To use mixed precision during pre-training, just specify --fp16 as an input argument. For older PyTorch versions, also specify --fp16_opt_level from O0, O1, O2, and O3.

How to fine-tune

GLUE

  1. Download GLUE data

    git clone https://github.com/huggingface/transformers
    python transformers/utils/download_glue_data.py
    
  2. Create a json config file
    You need to create a .json file for configuration or use command line arguments.

    {
        "model_name_or_path": "/path/to/pretrained/weights/",
        "tokenizer_name": "roberta-base",
        "task_name": "MNLI",
        "do_train": true,
        "do_eval": true,
        "data_dir": "/path/to/MNLI/dataset/",
        "max_seq_length": 128,
        "learning_rate": 2e-5,
        "num_train_epochs": 3, 
        "per_device_train_batch_size": 32,
        "per_device_eval_batch_size": 128,
        "logging_steps": 500,
        "logging_first_step": true,
        "save_steps": 1000,
        "save_total_limit": 2,
        "evaluate_during_training": true,
        "output_dir": "/path/to/save/models/",
        "overwrite_output_dir": true,
        "logging_dir": "/path/to/save/log/files/",
        "disable_tqdm": true
    }

    For task_name and data_dir, please choose one from CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE, and WNLI.

  3. Fine-tune

    python run_glue.py /path/to/json/
    

    Instead of specifying a JSON path, you can directly specify configs as input arguments.
    You can also monitor training via Tensorboard.
    --help option will display a helper message.

SQuAD

  1. Download SQuAD data

    cd ./utils
    python download_squad_data.py --save_dir=/path/to/squad/
    
  2. Fine-tune

    cd ..
    export SQUAD_DIR=/path/to/squad/
    python run_squad.py \
    --model_type roberta \
    --model_name_or_path=/path/to/pretrained/weights/ \
    --tokenizer_name roberta-base \
    --do_train \
    --do_eval \
    --do_lower_case \
    --data_dir=$SQUAD_DIR \
    --train_file $SQUAD_DIR/train-v1.1.json \
    --predict_file $SQUAD_DIR/dev-v1.1.json \
    --per_gpu_train_batch_size 16 \
    --per_gpu_eval_batch_size 32 \
    --learning_rate 3e-5 \
    --weight_decay=0.01 \
    --warmup_steps=3327 \
    --num_train_epochs 10.0 \
    --max_seq_length 384 \
    --doc_stride 128 \
    --logging_steps=278 \
    --save_steps=50000 \
    --patience=5 \
    --objective_type=maximize \
    --metric_name=f1 \
    --overwrite_output_dir \
    --evaluate_during_training \
    --output_dir=/path/to/save/weights/ \
    --logging_dir=/path/to/save/logs/ \
    --seed=42 
    

    Similar to pre-training, you can monitor the fine-tuning status via Tensorboard.
    --help option will display a helper message.

Citation

@inproceedings{yamaguchi-etal-2021-frustratingly,
    title = "Frustratingly Simple Pretraining Alternatives to Masked Language Modeling",
    author = "Yamaguchi, Atsuki  and
      Chrysostomou, George  and
      Margatina, Katerina  and
      Aletras, Nikolaos",
    booktitle = "Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2021",
    publisher = "Association for Computational Linguistics",
}

License

MIT License

Owner
Atsuki Yamaguchi
NLP researcher
Atsuki Yamaguchi
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
Fine-tune pretrained Convolutional Neural Networks with PyTorch

Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A

Alex Parinov 694 Nov 23, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022