Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

Related tags

Deep LearningNANSY
Overview

NANSY:

Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

Notice

Papers' Demo

Check Authors' Demo page

Sample-Only Demo Page

Check Demo Page

Concerns

Among the various controllabilities, it is rather obvious that the voice conversion technique can be misused and potentially harm other people. 
More concretely, there are possible scenarios where it is being used by random unidentified users and contributing to spreading fake news. 
In addition, it can raise concerns about biometric security systems based on speech. 
To mitigate such issues, the proposed system should not be released without a consent so that it cannot be easily used by random users with malicious intentions. 
That being said, there is still a potential for this technology to be used by unidentified users. 
As a more solid solution, therefore, we believe a detection system that can discriminate between fake and real speech should be developed.

We provide both pretrained checkpoint of Discriminator network and inference code for this concern.

Environment

Requirements

pip install -r requirements.txt

Docker

Image

If using cu113 compatible environment, use Dockerfile
If using cu102 compatible environment, use Dockerfile-cu102

docker build -f Dockerfile -t nansy:v0.0 .

Container

After building appropriate image, use docker-compose or docker to run a container.
You may want to modify docker-compose.yml or docker_run_script.sh

docker-compose -f docker-compose.yml run --service-ports --name CONTAINER_NAME nansy_container bash
or
bash docker_run_script.sh

Pretrained hifi-gan

Download pretrained hifi-gan config and checkpoint
from hifi-gan to ./configs/hifi-gan/UNIVERSAL_V1

Pretrained Checkpoints

TODO

Datasets

Datasets used when training are:

Custom Datasets

Write your own code!
If inheriting datasets.custom.CustomDataset, self.data should be as:

self.data: list
self.data[i]: dict must have:
    'wav_path_22k': str = path_to_22k_wav_file
    'wav_path_16k': str = (optional) path_to_16k_wav_file
    'speaker_id': str = speaker_id

Train

If you prefer pytorch-lightning, python train.py -g 1

parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/train_nansy.yaml")
parser.add_argument('-g', '--gpus', type=str,
                    help="number of gpus to use")
parser.add_argument('-p', '--resume_checkpoint_path', type=str, default=None,
                    help="path of checkpoint for resuming")
args = parser.parse_args()
return args

else python train_torch.py # TODO, not completely supported now

Configs Description

Edit configs/train_nansy.yaml.

Dataset settings

  • Adjust datasets.*.datasets list.
    • Paths to dataset config files should be in the list
datasets:
  train:
    class: datasets.base.MultiDataset
    datasets: [
      # 'configs/datasets/css10.yaml',
        'configs/datasets/vctk.yaml',
        'configs/datasets/libritts360.yaml',
    ]

    mode: train
    batch_size: 32 # Depends on GPU Memory, Original paper used 32
    shuffle: True
    num_workers: 16 # Depends on available CPU cores

  eval:
    class: datasets.base.MultiDataset
    datasets: [
      # 'configs/datasets/css10.yaml',
        'configs/datasets/vctk.yaml',
        'configs/datasets/libritts360.yaml',
    ]

    mode: eval
    batch_size: 32
    shuffle: False
    num_workers: 4
Dataset Config

Dataset configs are at ./configs/datasets/.
You might want to replace /raid/vision/dhchoi/data to YOUR_PATH_DO_DATA, especially at path section.

class: datasets.vctk.VCTKDataset # implemented Dataset class name
load:
  audio: 'configs/audio/22k.yaml'

path:
  root: /raid/vision/dhchoi/data/
  wav22: /raid/vision/dhchoi/data/VCTK-Corpus/wav22
  wav16: /raid/vision/dhchoi/data/VCTK-Corpus/wav16
  txt: /raid/vision/dhchoi/data/VCTK-Corpus/txt
  timestamp: ./vctk-silence-labels/vctk-silences.0.92.txt

  configs:
    train: /raid/vision/dhchoi/data/VCTK-Corpus/vctk_22k_train.txt
    eval: /raid/vision/dhchoi/data/VCTK-Corpus/vctk_22k_val.txt
    test: /raid/vision/dhchoi/data/VCTK-Corpus/vctk_22k_test.txt

Model Settings

  • Comment out or Delete Discriminator section if no Discriminator needed.
  • Adjust optimizer class, lr and betas if needed.
models:
  Analysis:
    class: models.analysis.Analysis

    optim:
      class: torch.optim.Adam
      kwargs:
        lr: 1e-4
        betas: [ 0.5, 0.9 ]

  Synthesis:
    class: models.synthesis.Synthesis

    optim:
      class: torch.optim.Adam
      kwargs:
        lr: 1e-4
        betas: [ 0.5, 0.9 ]

  Discriminator:
    class: models.synthesis.Discriminator

    optim:
      class: torch.optim.Adam
      kwargs:
        lr: 1e-4
        betas: [ 0.5, 0.9 ]

Logging & Pytorch-lightning settings

For pytorch-lightning configs in section pl, check official docs

pl:
  checkpoint:
    callback:
      save_top_k: -1
      monitor: "train/backward"
      verbose: True
      every_n_epochs: 1 # epochs

  trainer:
    gradient_clip_val: 0 # don't clip (default value)
    max_epochs: 10000
    num_sanity_val_steps: 1
    fast_dev_run: False
    check_val_every_n_epoch: 1
    progress_bar_refresh_rate: 1
    accelerator: "ddp"
    benchmark: True

logging:
  log_dir: /raid/vision/dhchoi/log/nansy/ # PATH TO SAVE TENSORBOARD LOG FILES
  seed: "31" # Experiment Seed
  freq: 100 # Logging frequency (step)
  device: cuda # Training Device (used only in train_torch.py) 
  nepochs: 1000 # Max epochs to run

  save_files: [ # Files To save for each experiment
      './*.py',
      './*.sh',
      'configs/*.*',
      'datasets/*.*',
      'models/*.*',
      'utils/*.*',
  ]

Tensorboard

During training, tensorboard logger logs loss, spectrogram and audio.

tensorboard --logdir YOUR_LOG_DIR_AT_CONFIG/YOUR_SEED --bind_all

Inference

Generator

python inference.py or bash inference.sh

You may want to edit inferece.py for custom manipulation.

parser = argparse.ArgumentParser()
parser.add_argument('--path_audio_conf', type=str, default='configs/audio/22k.yaml',
                    help='')
parser.add_argument('--path_ckpt', type=str, required=True,
                    help='path to pl checkpoint')
parser.add_argument('--path_audio_source', type=str, required=True,
                    help='path to source audio file, sr=22k')
parser.add_argument('--path_audio_target', type=str, required=True,
                    help='path to target audio file, sr=16k')
parser.add_argument('--tsa_loop', type=int, default=100,
                    help='iterations for tsa')
parser.add_argument('--device', type=str, default='cuda',
                    help='')
args = parser.parse_args()
return args

Discriminator

Note that 0=gt, 1=gen

python classify.py or bash classify.sh

parser = argparse.ArgumentParser()
parser.add_argument('--path_audio_conf', type=str, default='configs/audio/22k.yaml',
                    help='')
parser.add_argument('--path_ckpt', type=str, required=True,
                    help='path to pl checkpoint')
parser.add_argument('--path_audio_gt', type=str, required=True,
                    help='path to audio with same speaker')
parser.add_argument('--path_audio_gen', type=str, required=True,
                    help='path to generated audio ')
parser.add_argument('--device', type=str, default='cuda')
args = parser.parse_args()

License

NEEDS WORK

BSD 3-Clause License.

References

  • Choi, Hyeong-Seok, et al. "Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations."

  • Baevski, Alexei, et al. "wav2vec 2.0: A framework for self-supervised learning of speech representations."

  • Desplanques, Brecht, Jenthe Thienpondt, and Kris Demuynck. "Ecapa-tdnn: Emphasized channel attention, propagation and aggregation in tdnn based speaker verification."

  • Chen, Mingjian, et al. "Adaspeech: Adaptive text to speech for custom voice."

  • Cookbook formulae for audio equalizer biquad filter coefficients

This implementation uses codes/data from following repositories:

Provided Checkpoints are trained from:

Special Thanks

MINDsLab Inc. for GPU support

Special Thanks to:

for help with Audio-domain knowledge

Owner
Dongho Choi 최동호
Dongho Choi 최동호
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
A decent AI that solves daily Wordle puzzles. Works with different websites with similar wordlists,.

Wordle-AI A decent AI that solves daily "Wordle" puzzles. Works with different websites with similar wordlists. When prompted with "Word:" enter the w

Ethan 1 Feb 10, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023