Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Overview

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data
(CVPR 2022)

teaser2

Potentials of primitive shapes for representing things. We only use a line, ellipse, and rectangle to express a cat and a temple. These examples motivate us to develop Primitives, which generates the data by a simple composition of the shapes.

Official pytorch implementation of "Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data"

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data
Kyungjune Baek and Hyunjung Shim

Yonsei University

Absract Transfer learning for GANs successfully improves generation performance under low-shot regimes. However, existing studies show that the pretrained model using a single benchmark dataset is not generalized to various target datasets. More importantly, the pretrained model can be vulnerable to copyright or privacy risks as membership inference attack advances. To resolve both issues, we propose an effective and unbiased data synthesizer, namely Primitives-PS, inspired by the generic characteristics of natural images. Specifically, we utilize 1) the generic statistics on the frequency magnitude spectrum, 2) the elementary shape (i.e., image composition via elementary shapes) for representing the structure information, and 3) the existence of saliency as prior. Since our synthesizer only considers the generic properties of natural images, the single model pretrained on our dataset can be consistently transferred to various target datasets, and even outperforms the previous methods pretrained with the natural images in terms of Fr'echet inception distance. Extensive analysis, ablation study, and evaluations demonstrate that each component of our data synthesizer is effective, and provide insights on the desirable nature of the pretrained model for the transferability of GANs.

Requirement

Environment

For the easy construction of environment, please use the docker image.

  • Replace $DOCKER_CONTAINER_NAME, $LOCAL_MAPPING_DIRECTORY, and $DOCKER_MAPPING_DIRECTORY to your own name and directories.
nvidia-docker run -it --entrypoint /bin/bash --shm-size 96g --name $DOCKER_CONTAINER_NAME -v $LOCAL_MAPPING_DIRECTORY:$DOCKER_MAPPING_DIRECTORY bkjbkj12/stylegan2_ada-pytorch1.8:1.0

nvidia-docker start $DOCKER_CONTAINER_NAME
nvidia-docker exec -it $DOCKER_CONTAINER_NAME bash

Then, go to the directory containing the source code

Dataset

The low-shot datasets are from DiffAug repository.

Pretrained checkpoint

Please download the source model (pretrained model) below. (Mainly used Primitives-PS)

Hardware

  • Mainly tested on Titan XP (12GB), V100 (32GB) and A6000 (48GB).

How to Run (Quick Start)

Pretraining To change the type of the pretraining dataset, comment out ant in these lines.

The file "noise.zip" is not required. (Just running the script will work well.)

CUDA_VISIBLE_DEVICES=$GPU_NUMBER python train.py --outdir=$OUTPUT_DIR --data=./data/noise.zip --gpus=1

Finetuning Change or locate the pretrained pkl file into the directory specified at the code.

CUDA_VISIBLE_DEVICES=$GPU_NUMBER python train.py --outdir=$OUTPUT_DIR --gpus=1 --data $DATA_DIR --kimg 400 --resume $PKL_NAME_TO_RESUME

Examples

Pretraining:
CUDA_VISIBLE_DEVICES=0 python train.py --outdir=Primitives-PS-Pretraining --data=./data/noise.zip --gpus=1

Finetuning:
CUDA_VISIBLE_DEVICES=0 python train.py --outdir=Primitives-PS-to-Obama --gpus=1 --data ../data/obama.zip --kimg 400 --resume Primitives-PS

Pretrained Model

Download

Google Drive

PinkNoise Primitives Primitives-S Primitives-PS
Obama Grumpy Cat Panda Bridge of Sigh
Medici fountain Temple of heaven Wuzhen Buildings

Synthetic Datasets

image

Results

Generating images from the same latent vector

SameVector

GIF

Because of the limitation on the file size, the model dose not fully converge (total 400K but .gif contains 120K iterations).

gif_1

Low-shot generation

low-shot

CIFAR

samples0

interpZ0

Note

This repository is built upon DiffAug.

Citation

If you find this work useful for your research, please cite our paper:

@InProceedings{Baek2022Commonality,
    author    = {Baek, Kyungjune and Shim, Hyunjung},
    title     = {Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    year      = {2022}
}
Owner
Ph. D. student at School of Integrated Technology in Yonsei Univ., Korea absence: KST 4.28 ~ 5.19
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021