BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

Overview

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields

Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey
IEEE International Conference on Computer Vision (ICCV), 2021 (oral presentation)

Project page: https://chenhsuanlin.bitbucket.io/bundle-adjusting-NeRF
arXiv preprint: https://arxiv.org/abs/2104.06405

We provide PyTorch code for the NeRF experiments on both synthetic (Blender) and real-world (LLFF) datasets.


Prerequisites

This code is developed with Python3 (python3). PyTorch 1.9+ is required.
It is recommended use Anaconda to set up the environment. Install the dependencies and activate the environment barf-env with

conda env create --file requirements.yaml python=3
conda activate barf-env

Initialize the external submodule dependencies with

git submodule update --init --recursive

Dataset

  • Synthetic data (Blender) and real-world data (LLFF)

    Both the Blender synthetic data and LLFF real-world data can be found in the NeRF Google Drive. For convenience, you can download them with the following script: (under this repo)
    # Blender
    gdown --id 18JxhpWD-4ZmuFKLzKlAw-w5PpzZxXOcG # download nerf_synthetic.zip
    unzip nerf_synthetic.zip
    rm -f nerf_synthetic.zip
    mv nerf_synthetic data/blender
    # LLFF
    gdown --id 16VnMcF1KJYxN9QId6TClMsZRahHNMW5g # download nerf_llff_data.zip
    unzip nerf_llff_data.zip
    rm -f nerf_llff_data.zip
    mv nerf_llff_data data/llff
    The data directory should contain the subdirectories blender and llff. If you already have the datasets downloaded, you can alternatively soft-link them within the data directory.
  • iPhone (TODO)


Running the code

  • BARF models

    To train and evaluate BARF:

    # <GROUP> and <NAME> can be set to your likes, while <SCENE> is specific to datasets
    
    # Blender (<SCENE>={chair,drums,ficus,hotdog,lego,materials,mic,ship})
    python3 train.py --group=<GROUP> --model=barf --yaml=barf_blender --name=<NAME> --data.scene=<SCENE> --barf_c2f=[0.1,0.5]
    python3 evaluate.py --group=<GROUP> --model=barf --yaml=barf_blender --name=<NAME> --data.scene=<SCENE> --data.val_sub= --resume
    
    # LLFF (<SCENE>={fern,flower,fortress,horns,leaves,orchids,room,trex})
    python3 train.py --group=<GROUP> --model=barf --yaml=barf_llff --name=<NAME> --data.scene=<SCENE> --barf_c2f=[0.1,0.5]
    python3 evaluate.py --group=<GROUP> --model=barf --yaml=barf_llff --name=<NAME> --data.scene=<SCENE> --resume

    All the results will be stored in the directory output/<GROUP>/<NAME>. You may want to organize your experiments by grouping different runs in the same group.

    To train baseline models:

    • Full positional encoding: omit the --barf_c2f argument.
    • No positional encoding: add --arch.posenc!.

    If you want to evaluate a checkpoint at a specific iteration number, use --resume=<ITER_NUMBER> instead of just --resume.

  • Training the original NeRF

    If you want to train the reference NeRF models (assuming known camera poses):

    # Blender
    python3 train.py --group=<GROUP> --model=nerf --yaml=nerf_blender --name=<NAME> --data.scene=<SCENE>
    python3 evaluate.py --group=<GROUP> --model=nerf --yaml=nerf_blender --name=<NAME> --data.scene=<SCENE> --data.val_sub= --resume
    
    # LLFF
    python3 train.py --group=<GROUP> --model=nerf --yaml=nerf_llff --name=<NAME> --data.scene=<SCENE>
    python3 evaluate.py --group=<GROUP> --model=nerf --yaml=nerf_llff --name=<NAME> --data.scene=<SCENE> --resume

    If you wish to replicate the results from the original NeRF paper, use --yaml=nerf_blender_repr or --yaml=nerf_llff_repr instead for Blender or LLFF respectively. There are some differences, e.g. NDC will be used for the LLFF forward-facing dataset. (The reference NeRF models considered in the paper do not use NDC to parametrize the 3D points.)

  • Visualizing the results

    We have included code to visualize the training over TensorBoard and Visdom. The TensorBoard events include the following:

    • SCALARS: the rendering losses and PSNR over the course of optimization. For BARF, the rotational/translational errors with respect to the given poses are also computed.
    • IMAGES: visualization of the RGB images and the RGB/depth rendering.

    We also provide visualization of 3D camera poses in Visdom. Run visdom -port 9000 to start the Visdom server.
    The Visdom host server is default to localhost; this can be overridden with --visdom.server (see options/base.yaml for details). If you want to disable Visdom visualization, add --visdom!.


Codebase structure

The main engine and network architecture in model/barf.py inherit those from model/nerf.py. This codebase is structured so that it is easy to understand the actual parts BARF is extending from NeRF. It is also simple to build your exciting applications upon either BARF or NeRF -- just inherit them again! This is the same for dataset files (e.g. data/blender.py).

To understand the config and command lines, take the below command as an example:

python3 train.py --group=<GROUP> --model=barf --yaml=barf_blender --name=<NAME> --data.scene=<SCENE> --barf_c2f=[0.1,0.5]

This will run model/barf.py as the main engine with options/barf_blender.yaml as the main config file. Note that barf hierarchically inherits nerf (which inherits base), making the codebase customizable.
The complete configuration will be printed upon execution. To override specific options, add --<key>=value or --<key1>.<key2>=value (and so on) to the command line. The configuration will be loaded as the variable opt throughout the codebase.

Some tips on using and understanding the codebase:

  • The computation graph for forward/backprop is stored in var throughout the codebase.
  • The losses are stored in loss. To add a new loss function, just implement it in compute_loss() and add its weight to opt.loss_weight.<name>. It will automatically be added to the overall loss and logged to Tensorboard.
  • If you are using a multi-GPU machine, you can add --gpu=<gpu_number> to specify which GPU to use. Multi-GPU training/evaluation is currently not supported.
  • To resume from a previous checkpoint, add --resume=<ITER_NUMBER>, or just --resume to resume from the latest checkpoint.
  • (to be continued....)

If you find our code useful for your research, please cite

@inproceedings{lin2021barf,
  title={BARF: Bundle-Adjusting Neural Radiance Fields},
  author={Lin, Chen-Hsuan and Ma, Wei-Chiu and Torralba, Antonio and Lucey, Simon},
  booktitle={IEEE International Conference on Computer Vision ({ICCV})},
  year={2021}
}

Please contact me ([email protected]) if you have any questions!

Owner
Chen-Hsuan Lin
Research scientist @NVIDIA, PhD in Robotics @ CMU
Chen-Hsuan Lin
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 02, 2021
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022