QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

Overview

2021_QQ_AIAC_Tack1_1st

QQ浏览器2021AI算法大赛赛道一 第1名 方案

paper :

环境

python==3.7.10
torch==1.7.1
transformers==4.5.1
pretrain 需要显存>=24GB 内存>=100GB

数据下载

(1) 视频数据集
视频数据集在官网下载 https://algo.browser.qq.com/
预期主办方会开源数据集,开源后会将地址补上
下载后放到 ./input/data 文件夹
tag_list 为标签的 top1w,官方 baseline 中提供,放到同一文件夹

(2) 预训练模型
预训练模型使用了 https://huggingface.co/hfl/chinese-roberta-wwm-ext-large
请使用 python3 -u download_pretrain_model.py 下载

步骤代码

(1) 预训练 + finetune
脚本命令:sh train.sh
时间算力:单模在 1 张 a100 上大约需要 pretrain(2 day),finetune(2 hour)
输出文件:每个单模的 checkpoint 保存在 jobN/model_finetune_1.pth
备注:各个单模间没有前后依赖关系,每个任务需要一张单卡,有多卡可以并行训练各个单模

(2) 代码结构说明
download_pretrain_model.py : 下载预训练模型的脚本
ensemble.py : 融合的脚本
job1-job6 : 六个模型训练任务,其文件结构完全一致,各 job 之间主要差别在预训练设置上
注:job1在赛后额外补充了一些代码注释
jobN/pretrain.py 预训练脚本
jobN/finetune.py finetune脚本
jobN/data 数据预处理部分,包含 dataset、mask token 等
jobN/config 包含 pretrain 与 finetune 的一些超参配置
jobN/qqmodel/qq_uni_model.py 模型定义

简介

简要介绍的 ppt 请参考 Introduction.pdf

模型简介

多模态模型结构与参数量和 Bert-large 一致,
layer=24, hidden_size=1024, num_attention_heads=16。
其输入为[CLS] Video_frame [SEP] Video_title [SEP]。
frame_feature 通过 fc 降维为 1024 维,与 text 的 emb 拼接。
Input_emb -> TransformerEncoder * 24 -> Pooling -> Fc -> Video_emb

预训练

预训练采用了 Tag classify, Mask language model, Mask frame model 三个任务

(1) Video tag classify 任务
tag 为人工标注的视频标签,pointwise 和 pairwise 数据集合中提供。
和官方提供的 baseline 一致,我们采用了出现频率前1w 的tag 做多标签分类任务。
Bert 最后一层的 [CLS] -> fc 得到 tag 的预测标签,与真实标签计算 BCE loss

(2) Mask language model 任务
与常见的自然语言处理 mlm 预训练方法相同,对 text 随机 15% 进行 mask,预测 mask 词。
多模态场景下,结合视频的信息预测 mask 词,可以有效融合多模态信息。

(3) Mask frame model 任务
对 frame 的随机 15% 进行 mask,mask 采用了全 0 的向量填充。
考虑到 frame 为连续的向量,难以类似于 mlm 做分类任务。
借鉴了对比学习思路,希望 mask 的预测帧在整个 batch 内的所有帧范围内与被 mask 的帧尽可能相似。
采用了 Nce loss,最大化 mask 帧和预测帧的互信息

(4) 多任务联合训练
预训练任务的 loss 采用了上述三个任务 loss 的加权和,
L = L(tag) * 1250 / 3 + L(mlm) / 3.75 + L(mfm) / 9
tag 梯度量级比较小,因此乘以了较大的权重。
注:各任务合适的权重对下游 finetune 的效果影响比较大。

(5) 预训练 Setting
初始化:bert 初始化权重来自于在中文语料预训练过的开源模型 https://huggingface.co/hfl/chinese-roberta-wwm-ext-large
数据集:预训练使用了 pointwise 和 pairwise 集合,部分融合模型中加上了 test 集合(只有 mlm 和 mfm 任务)
超参:batch_size=128, epoch=40, learning_rate=5e-5, scheduler=warmup_with_cos_decay, warum_ratio=0.06
注:预训练更多的 epoch 对效果提升比较大,从10 epoch 提升至 20 epoch 对下游任务 finetune 效果提升显著。

Finetune

(1) 下游任务
视频 pair 分别通过 model 得到 256维 embedding,两个 embedding 的 cos 相似度与人工标注标签计算 mse

(2) Finetune header
实验中发现相似度任务中,使用 mean_pooling 或者 attention_pooling 聚合最后一层 emb 接 fc 层降维效果较好。

(3) Label normalize
评估指标为 spearman,考查预测值和实际值 rank 之间的相关性,因此对人工标注 label 做了 rank 归一化。
即 target = scipy.stats.rankdata(target, 'average')

(4) Finetune Setting
数据集:训练集使用了 pairwise 中 (id1%5!=0) | (id2%5 !=0) 的部分约 6.5w,验证集使用了(id1%5==0) & (id2%5==0) 的部分约 2.5k
超参:batch_size=32, epoch=10, learning_rate=1e-5, scheduler=warmup_with_cos_decay, warum_ratio=0.06

Ensemble

(1) 融合的方法
采用了 weighted concat -> svd 降维 方法进行融合。实验中发现这种方法降维效果折损较小。
concat_vec = [np.sqrt(w1) * emb1, np.sqrt(w2) * emb2, np.sqrt(w3) * emb3 ...]
svd_vec = SVD(concat_vec, 256)

(2) 融合的模型
最终的提交融合了六个模型。 模型都使用了 bert-large 这种结构,均为迭代过程中产出的模型,各模型之间只有微小的 diff,各个模型加权权重均为 1/6。
下面表格中列出了各模型的diff部分,验证集mse,验证集spearman

jobid ensemble-weight detail val-spearman val-mse
job1 1/6 base 0.886031 0.028813
job2 1/6 预训练tag分类任务为mean_pooling+fc 0.884257 0.029493
job3 1/6 预训练任务无 mfm 0.883843 0.029248
job4 1/6 预训练数据为 (point + pair)shuf-40epoch => pair-5epoch 0.885397 0.029059
job5 1/6 预训练数据为 (point-shuf => pair-shuf => test-shuf)-32epoch 0.885795 0.028866
job6 1/6 预训练 mlm/mfm mask概率调整为25% 0.886289 0.029039

(3) 单模型的效果与融合的效果
单模的测试集成绩约在 0.836
融合两个模型在 0.845
融合三个模型在 0.849
融合五个模型在 0.852

Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022